APPENDIX E TRAFFIC AND CIRCULATION STUDY FOR THE 7400 CATHEDRAL OAKS ROAD PROJECT: CITY OF GOLETA, CA # 7400 CATHEDRAL OAKS ROAD PROJECT CITY OF GOLETA, CALIFORNIA #### TRAFFIC AND CIRCULATION STUDY February 23, 2011 ATE #10086 ### Prepared for: L & P Consultants 3 West Carrillo Street, Suite 205 Santa Barbara, CA 93101 # **ASSOCIATED TRANSPORTATION ENGINEERS** 100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110-1686 @ (805) 687-4418 @ FAX (805) 682-8509 # **ASSOCIATED TRANSPORTATION ENGINEERS** 100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 • (805) 687-4418 • FAX (805) 682-8509 Diebond | Dool DE Richard L. Pool, P.E. Scott A. Schell, AICP, PTP February 23, 2011 10086R01.wpd Brent Daniels L & P Consultants 3 West Carrillo Street, Suite 205 Santa Barbara, CA 93101 # TRAFFIC AND CIRCULATION STUDY FOR THE 7400 CATHEDRAL OAKS ROAD PROJECT - CITY OF GOLETA, CA Associated Transportation Engineers (ATE) has prepared the following traffic and circulation study for the 7400 Cathedral Oaks Road Project, located in the City of Goleta. The study addresses potential traffic and circulation impacts associated with the project and identifies improvements where appropriate. Associated Transportation Engineers Scott A. Schell, AICP, PTP Principal Transportation Planner ### **CONTENTS** | INTRODUCTION | • • • | . 1 | |--|-------|----------------| | PROJECT DESCRIPTION | | . 1 | | EXISTING CONDITIONS | | . 1 | | THRESHOLDS OF SIGNIFICANCE | | 10 | | PROJECT-SPECIFIC ANALYSIS | | 11
11
13 | | CUMULATIVE ANALYSIS | | 18
19 | | SITE ACCESS AND CIRCULATION | | 27 | | CONGESTION MANAGEMENT PROGRAM ANALYSIS Impact Criteria Potential Intersection Impacts Potential Freeway Impacts | | 28
29 | | REFERENCES AND PERSONS CONTACTED | | 31 | | TECHNICAL APPENDIX | | 32 | ## **TABLES** | Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 | Existing Average Daily Roadways Volumes | |---|---| | | FIGURES | | Figure 1 | Existing Street Network and Project Location | | Figure 2 | Project Site Plan 3 | | Figure 3 | Existing Average Daily Traffic Volumes | | Figure 4 | Study-Area Intersections and Existing Lane Geometries | | Figure 5 | Existing A.M. Peak Hour Traffic Volumes | | Figure 6 | Existing P.M. Peak Hour Traffic Volumes | | Figure 7 | Project Trip Distribution and Assignment | | Figure 8 | Existing + Project Average Daily Traffic Volumes | | Figure 9 | Existing + Project A.M. Peak Hour Traffic Volumes | | Figure 10 | Existing + Project P.M. Peak Hour Traffic Volumes | | Figure 11 | Cumulative Average Daily Traffic Volumes | | Figure 12 | Cumulative + Project Average Daily Traffic Volumes | | | Cumulative A.M. Peak Hour Traffic Volumes | | Figure 13 | Cumulative P.M. Peak Hour Traffic Volumes | | Figure 14 | Cumulative + Project A.M. Peak Hour Traffic Volumes | | Figure 15 | | | Figure 16 | Cumulative + Project P.M. Peak Hour Traffic Volumes | #### INTRODUCTION The following report contains an analysis of the potential traffic and circulation impacts associated with the 7400 Cathedral Oaks Road Project. The report provides information regarding existing and future traffic conditions within the project study-area, and recommends improvements where necessary. The report also contains an analysis of the site access and circulation plan. The scope of work included in the study was developed based on input from City staff. #### **PROJECT DESCRIPTION** The project is proposing to develop a vacant site, located at 7400 Cathedral Oaks Road, in the western area of the City of Goleta, with 60 single family dwelling units. Figure 1 presents the location of the project site within the City. Access to the project site would be provided via two new roadway connections to Cathedral Oaks Road. A new loop road would be constructed to provide internal circulation throughout the site. Figure 2 presents the project site plan. #### **EXISTING CONDITIONS** #### Street Network The project site is served by a network of highways, arterial streets and collector streets, as illustrated in Figure 1. The following text provides a brief discussion of the major components of the study-area street network. U.S. Highway 101, located south of the project site, is a multi-lane interstate freeway serving the Pacific Coast between Los Angeles and the state of Washington. U.S. Highway 101 is the principal route between the City of Goleta and the adjacent cities of Santa Barbara, Carpenteria, and Ventura to the south; and the cities of Buellton and Santa Maria to the north. Access from the site to U.S. Highway 101 would be provided via the Glen Annie-Storke Road interchange located east of the project site and the Hollister Avenue interchange located west of the site. It is noted that, at the time this report was published, construction was underway on the U.S. Highway 101/Hollister Avenue interchange project. A detailed discussion of the proposed modifications interchange is provided in the Cumulative Analysis section of this report. **Cathedral Oaks Road** is a two- and four-lane arterial roadway located along the project's southern frontage. This east-west roadway extends from Goleta to Santa Barbara, providing an alternative travel route to U.S. Highway 101 and Hollister Avenue. **Storke Road-Glen Annie Road**, located east of the project site, is a 2-4 lane north-south arterial roadway that extends between Cathedral Oaks Road on the north and El Colegio Road on the south. Storke Road provides freeway access to the western portion of the Goleta Valley area via an interchange at U.S. Highway 101. North of the interchange, Storke Road becomes Glen Annie Road and extends as a 2-lane road north of Cathedral Oaks Road. T RANSPORTATION E NGINEERS **EXISTING STREET NETWORK AND PROJECT LOCATION** **FIGURE** MMF - #10086 Hollister Avenue, located south of U.S. Highway 101, is a 2- to 4-lane east-west arterial which extends easterly from its terminus at the U.S. Highway 101/Hollister Avneue interchange through the community of Goleta, connecting with State Street in the City of Santa Barbara. Hollister Avenue serves as the major alternative east-west travel route to U.S. Highway 101 in the Goleta Valley area. Calle Real, located south of the project site, is an east-west arterial with 2 travel lanes between Winchester Canyon Road and Glen Annie Road. Calle Real provides direct access from U.S. Highway 101 for the western portion of the Goleta Valley with an off-ramp at Winchester Canyon Road. Winchester Canyon Road, located west of the project site, is a two-lane road that provides access between the U.S. Highway 101 northbound off-ramp and Cathedral Oaks Road. #### **Roadway Operations** Figure 3 illustrates the existing average daily traffic (ADT) volumes for the key roadways in the study area. The ADT volumes were obtained from traffic counts conducted in January 2011 for this study as well as counts collected in November 2009. The operational characteristics of the study-area roadways were analyzed based on the City of Goleta engineering roadway design capacities (summarized in the Technical Appendix). Table 1 shows the existing ADT volumes and the acceptable capacity thresholds for the key roadways in the project study area. Table 1 Existing Average Daily Roadways Volumes | Roadway Segment | Roadway
Classification | Geometry | Acceptable
Capacity | Existing
ADT | |--------------------------------------|---------------------------|----------|------------------------|-----------------| | Cathedral Oaks w/o Glen Annie Road | Major Arterial | 2-Lane | 14,300 | 9,500 | | Glen Annie Road n/o U.S. Highway 101 | Major Arterial | 2-Lane | 14,300 | 9,200 | | Storke Road s/o U.S. Highway 101 | Major Arterial | 4-lane | 34,000 | 33,800 | The data presented in Table 1 shows that the study-area roadways currently carry volumes within the City's acceptable capacity designations for arterial roadways. #### **Intersection Operations** Because traffic flow on urban arterials is most constrained at intersections, detailed traffic flow analyses focus on the operating conditions of critical intersections during peak travel periods. In rating intersection operations, "Levels of Service" (LOS) A through F are used, with LOS A indicating free flow operations and LOS F indicating congested operations (more complete definitions of levels of service are included in the Technical Appendix). The City of Goleta considers LOS C as the minimum acceptable operating standard for all intersections, with the exception of the Storke Road/Hollister Avenue intersection, where LOS D is considered acceptable. Figure 4 presents the intersections analyzed in this study and illustrates the existing traffic controls and lane geometries. Existing A.M. and P.M. peak hour volumes were collected for the study-area intersections in October of 2009 and in January 2011 for this study (traffic count data is contained in the Technical Appendix for reference). Existing A.M. and P.M. peak hour traffic volumes for the study-area intersections are shown on Figures 4 and 5. Levels of service were calculated for the signalized study-area intersections using the "Intersection Capacity Utilization" (ICU) methodology. Levels of service for the unsignalized intersections were calculated using the methodology outlined in the Highway Capacity Manual (HCM). Table 2 lists the existing traffic control and levels of service for the study-area intersections (calculation worksheets are contained in the Technical Appendix). Table 2 Existing Intersection Levels of Service | | 6 | A.M. Peak | | P.M. Peak | | |---|------------|-----------|-----|-----------|-----| | Intersection | Control
| ICU | LOS | ICU | LOS | | Cathedral Oaks Road/Winchester Canyon Road (a) | 4-Way Stop | 8.9 sec. | Α | 8.2 sec. | Α | | U.S.101 NB- Calle Real/Winchester Canyon Rd. (a) | 2-way Stop | 8.0 sec. | Α | 8.7 sec. | Α | | Cathedral Oaks Road/Northgate DrEvergreen Dr. (a) | 2-way Stop | 11.4 sec. | В | 8.9 sec. | Α | | Cathedral Oaks Road/Alameda Avenue | Signal | 0.50 | Α | 0.28 | Α | | Cathedral Oaks Road/Glen Annie Road | Signal | 0.75 | С | 0.55 | Α | | U.S. 101 NB Ramps-Calle Real/Storke Road | Signal | 0.71 | С | 0.69 | В | | U.S. 101 SB Ramps/Storke Road | Signal | 0.78 | С | 0.76 | С | | Hollister Avenue/Storke Road | Signal | 0.61 | В | 0.74 | С | ⁽a) Unsignalized Intersection. LOS based on average weighted delay in seconds per vehicle. The data presented in Table 2 show that all of the study-area intersections operate at LOS C or better during the A.M. and P.M. peak hours. These levels of service are considered acceptable based on the City's LOS C operating standard. Highway Capacity Manual , Transportation Research Special Report 209, National Research Council, 2000. E NGINEERS | 23
27
=
58 | <u>11</u>
−136
−10 | | |---------------------|--------------------------|--| | 15
97
10 | └-54
19
 -33 | | | 2
\$
 | 1 118 −90 | |-------------|------------------| | 55_ | | | 3 4 1 | 23 - | <u>142</u> —19 | | |--------------------------|----------|----------------|--| | 3 -
345-
5- | <u> </u> | ار
ر | | | 4 | 170
196 | |----------------|---------------| | 384——
122—— | └_243
┌─64 | | 9—
18——
59—2— | —355
—55 | |---------------------|--------------------| | 6—
427—
349— | —30
—30
—295 | | 9_J
568 | -236
-392
-602 | |----------------|----------------------| | 43
4
728 | −160
−157 | | 831 년
1067 —
기 | | |----------------------|--------------| | 15—
2—
168— | ∟811
—326 | | | 8
490
490
659
340
58 | 415 | <u>131</u>
−103 | | |--|-------------------------------------|--------------|--------------------|--| | | | - | 158
1498
132 | | | 12 J
46 — | <u>12</u>
−47
−17 | |--------------|-------------------------| | 18— | ר30 | | 76— | 11 | | 14— | ר20 | | 2 | 125 | └ 201
 144 | |---|-----|---------------------------------| | | 53— | | | 3]
 -
 [_ | 16—1 | ∟ ₃₂
146
73 | | |------------------------------|--------|------------------------------|---| | 4·
129 ⁻
6· | 7 [- | ן
קרני | - | | 4 | | |--------------|--------------| | | —283
—86 | | 175—
10—) | └_68
┌─26 | | 8 —
26 —
5] 4 — | └16
222
84 | |-----------------------|--------------------| | 3—
216—
156— | —24
—24
—282 | | التوريخ
308 —
احمال | └ ₁₅₅
423
┌1021 | |---------------------------|----------------------------------| | 11—
2—
331— | └─160
232
 | | 321 し
1338 — | | |----------------------------|---------------| | 13—1
0—
43—1 | └_1070
678 | | | 759 | 139 🖵 | └-464
484
226 | |--|------------------|---------------|---------------------| | | 573
395
62 | ;— | ←144
←625
←76 | #### THRESHOLDS OF SIGNIFICANCE The City of Goleta traffic impact thresholds were used to assess the project's potential impacts. The thresholds are listed below. A. The project will result in a significant impact on transportation and circulation if proposed project traffic increases the volume to capacity (V/C) ratio at local intersections by the values provided in the following table: | Significant Changes In Levels Of Service | | | | | | |--|--|--|--|--|--| | Intersection Level of Service
(Including Project) | Increase in V/C or Trips
Greater Than | | | | | | LOS A | 0.20 | | | | | | LOS B | 0.15 | | | | | | LOS C | 0.10 | | | | | | LOS D | 15 Trips | | | | | | LOS E | 10 Trips | | | | | | LOS F | 5 Trips | | | | | - B. The project's access to a major road or arterial road would require access that would create an unsafe situation, a new traffic signal, or major revisions to an existing traffic signal. - C. The project would add traffic to a roadway that has design features (e.g., narrow width, road-side ditches, sharp curves, poor sight distance, inadequate pavement structure) that would become a potential safety problem with the addition of project traffic. - D. Project traffic would utilize a substantial portion of an intersection's capacity where the intersection is currently operating at acceptable levels of service, but with cumulative traffic would degrade to or approach LOS D (V/C 0.80) or lower. Substantial is defined as a minimum change of 0.03 for an intersection which would operate from 0.80 to 0.85, a change of 0.02 for an intersection which would operate from 0.86 to 0.90 and a change of 0.01 for an intersection which would operate greater than 0.90 (LOS E or worse). In addition to the CEQA impact thesholds, the City of Goleta has developed the administrative policy of defining a significant roadway impact if a project would increase traffic volumes by more than 1.0% (either project-specific or project contribution to cumulative impacts) on roadways that currently exceed the Acceptable Capacity or are forecast to exceed the Acceptable Capacity under cumulative conditions. #### **PROJECT-SPECIFIC ANALYSIS** #### **Project Trip Generation** The project is proposing to develop a traditional style neighborhood with 60 single family homes. Trip generation estimates were calculated for the project based on the rates presented in the Institute of Transportation Engineers (ITE) Trip Generation Manual.² The rates for Single Family Detached Housing units (Land Use Code 210) were used to forecast project traffic (trip generation calculations were reviewed and approved by City staff). Table 3 presents trip generation estimates developed for the 7400 Cathedral Oaks Road Project. Table 3 Project Trip Generation | | | Average Daily | | A.M. Peak Hour | | P.M. Peak Hour | | |---------------------|----------|---------------|--------------|----------------|----------------|----------------|----------------| | Land Use | Size | Rate | Trips | Rate | Trips (In/Out) | Rate | Trips (In/Out) | | Single Family Homes | 60 Units | 9.57 | 5 <i>7</i> 4 | 0.75 | 45 (11/34) | 1.01 | 61 (39/22) | The data presented in Table 1 indicate that the project would generate 574 average daily trips, 45 A.M. peak hour trips and 61 P.M. peak hour trips. #### **Trip Distribution** Trip distribution percentages were developed for the project based on existing traffic flows and consideration of the retail, school and employment centers in the surrounding area (trip distribution parameters were reviewed and approved by City staff). Table 4 and Figure 7 show the trip distribution percentages developed for the project. The project-added traffic volumes are also presented on Figure 7. ² <u>Trip Generation</u>, Institute of Transportation Engineers, 8th edition, 2008. Associated Transportation Engineers February 23, 2011 E NGINEERS PROJECT TRIP DISTRIBUTION AND ASSIGNMENT MMF - #10086 Table 4 Trip Distribution Percentages | Origin/Destination | Direction | Percentage | | | |---|--|-----------------|--|--| | U.S. Highway 101 - Via Hollister Avenue Interchange - Via Hollister Avenue Interchange - Via Storke Road Interchange | West
East
East | 5%
5%
45% | | | | Cathedral Oaks Road | East | 10% | | | | Hollister Avenue | East of Storke Road
West of Storke Road | 15%
10% | | | | Storke Road | South of Hollister Ave | 10% | | | | Total | | 100% | | | #### **Existing + Project Roadway Operations** Table 5 lists the Existing + Project roadway volumes and identifies the potential impacts of the traffic additions based on the City of Goleta's capacity thresholds. Existing + Project ADT volumes are presented on Figure 8. Table 5 Existing + Project Roadway Volumes | Roadway Segment | Acceptable
Capacity | Existing
ADT | EX + Project
ADT | %
Change | Impact? | |--------------------------------------|------------------------|-----------------|---------------------|-------------|---------| | Cathedral Oaks w/o Glen Annie Road | 14,300 | 9,500 | 10,017 | 5.4% | No | | Glen Annie Road n/o U.S. Highway 101 | 14,300 | 9,200 | 9,659 | 5.0% | No | | Storke Road s/o U.S. Highway 101 | 34,000 | 33,800 | 34,001 | 0.6% | No | **Bolded** Items Exceed Acceptable Capacity. The data in Table 5 show that the segments of Cathedral Oaks Road west of Glen Annie Road and Glen Annie Road north of U.S. 101 are forecast to carry volumes within their acceptable capacity designations with Existing + Project volumes. The segment of Storke Road south of U.S. Highway 101 is forecast to carry volumes that will exceed the acceptable capacity under Existing + Project conditions. The project would not impact this segment since project-generated traffic would increase the roadway volume by less than 1%. E NGINEERS #### **Existing + Project Intersection Operations** Peak hour levels of service were calculated for the study-area intersections using the Existing + Project traffic volumes presented on Figures 9 and 10. Tables 6 and 7 compare the Existing and Existing + Project levels of service and identify project-specific impacts based on the City's thresholds. Table 6 Existing + Project A.M. Peak Hour Levels of Service | Intersection | Exist | Existing Existing - Project | | _ | Project-
Added | Change
in V/C | Impact? | |--|---------------|-----------------------------|-----------|-----|-------------------|------------------|---------| | | ICU LOS | | ICU | LOS | Trips | | • | | Cathedral Oaks Rd./Winchester Cyn.
Rd. (a)
| 8.9 sec. | A | 8.9 sec. | Α | 4 Trips | 0.008(b) | No | | U.S.101 NB- Calle Real/Winchester
Cyn. Rd. (a) | 8.0 sec. | Α | 8.0 sec. | Α | 1 Trip | 0.002(b) | No | | Cathedral Oaks Rd./Northgate Drive
Evergreen Drive. (a) | 11.4 sec. | В | 11.4 sec. | В | 4 Trips | 0.006(b) | No | | Cathedral Oaks Road/Alameda Avenue | 0.50 | Α | 0.52 | A | 41 Trips | 0.018 | No | | Cathedral Oaks Road/Glen Annie Road | 0.75 | С | 0.77 | С | 41 Trips | 0.021 | No | | U.S. 101 NB Ramps-Calle Real/Storke
Road | 0. <i>7</i> 1 | С | 0.72 | С | 36 Trips | 0.009 | No | | U.S. 101 SB Ramps/Storke Road | 0.78 | С | 0.79 | С | 31 Trips | 0.005 | No | | Hollister Avenue/Storke Road | 0.61 | В | 0.61 | В | 15 Trips | 0.001 | No | ⁽a) Unsignalized Intersection. LOS based on average weighted delay in seconds per vehicle. ⁽b) V/C ratio does not apply to unsignalized locations. Value shown correlates to % change in entering traffic volumes. | 1
27
58 | └ ₁₁
139
┌10 | | |----------------------|-------------------------------|--| | 15—1
97——
10—— | —19
—19
—33 | | | 2 | 164 – | └ 91
 118 | |---|-------|--------------------------------| | | 55 | | | 23 L
1 L | └ ₇
─ 145
┌ 19 | |-------------|--| | 346
5-7 | ر
ر
ر | | 4 | | |-----------|---------------------| | | 180
196 | | 415—122—1 | ►243
↑ 64 | | | 9 J
18 7
5 2 7 | └─13
──356
┌─55 | |--|----------------------|-----------------------| | | 6—
431—
376— | 7 00 00 T | | 9 J
595 — | —241
—392
—602 | |-------------------|----------------------| | 43—
4—
728— | −23
−164
−157 | | 847 J
1078 — | | |-------------------|--------------| | 15—
2—
168— | —330
—330 | | | 418 -
495 -
375 - | └-67
131
103 | |---|--|--------------------| | 4 | 660—
340—
58— | —500
—32 | ASSOCIATED T RANSPORTATION E NGINEERS EXISTING+PROJECT A.M. PEAK HOUR TRAFFIC VOLUMES **FIGURE** | 131 12 1 | <u>12</u>
−49
− 17 | | |-------------------|---------------------------------|--| | 18—
78—
14— | —32
—11
—20 | | | 2 | 2 | 125 | └ _203
- _144 | |---|----|-----|------------------------------------| | | 53 | | | | 3
3
1
1
1 | └─32
──148
┌─ ⁷³ | |-----------------------|-----------------------------------| | 133 | L47 | | 4 | 318
86 | |---------------------------------|--------------------| | 195
10 - | <u>⊢</u> 68
←26 | | 5
26
1 | <u>16</u>
−226
−84 | |--------------------|--------------------------| | 3—
218—
174— | ∟88
—24
┌313 | | ر
326 —
ق ا ¹² | 173
173
1021
1021 | |---------------------------------|----------------------------| | 11-1-
2-1-
331-1- | —245
—299 | | 332 –
1345 – | | |-------------------------------|---------------| | 13
0
43
7 | └_1070
691 | | 141 —
534 —
761 — | -468
-484
-226 | |-------------------------|-----------------------| | 577—
395—
62— | └-144
630
 776 | FIGURE Table 7 Existing + Project P.M. Peak Hour Levels of Service | Intersection | Existing | | Existing +
Project | | Project-
Added | Change | Impact? | |---|----------|-----|-----------------------|-----|-------------------|-----------|---------| | | ICU | LOS | ICU | LOS | Trips | In V/C | • | | Cathedral Oaks Road/Winchester Canyon
Road (a) | 8.2 sec. | A | 8.2 sec. | A | 6 Trips | 0.018 (b) | No | | U.S.101 NB- Calle Real/Winchester Canyon
Rd. (a) | 8.3 sec. | Α | 8.3 sec. | Α | 2 Trips | 0.004 (b) | No | | Cathedral Oaks Road/Northgate Dr
Evergreen Dr. (a) | 8.9 sec. | A | 8.9 sec. | Α | 6 Trips | 0.013 (b) | No | | Cathedral Oaks Road/Alameda Avenue | 0.29 | A | 0.32 | Α | 55 Trips | 0.022 | No | | Cathedral Oaks Road/Glen Annie Road | 0.55 | Α | 0.58 | Α | 55 Trips | 0.029 | No | | U.S. 101 NB Ramps-Calle Real/Storke Road | 0.69 | В | 0.70 | В | 49 Trips | 0.009 | No | | U.S. 101 SB Ramps/Storke Road | 0.76 | С | 0.76 | С | 31 Trips | 0.004 | No | | Hollister Avenue/Storke Road | 0.74 | С | 0.74 | С | 20 Trips | 0.006 | No | ⁽a) Unsignalized Intersection. LOS based on average weighted delay in seconds per vehicle. The data presented in Tables 6 and 7 indicate that the project would not significantly impact the study-area intersections under the Existing + Project scenario based on the City's project-specific traffic impact thresholds. #### **CUMULATIVE ANALYSIS** #### **Cumulative Traffic Volumes** Cumulative traffic volumes were forecast using the City's traffic model. The cumulative forecasts include traffic generated by approved and pending projects proposed within the Goleta area (the cumulative model volumes and a list summarizing the approved and pending projects is contained in the Technical Appendix for reference) as well as development of the UCSB Long Range Development Plan, the Santa Barbara Airport Specific Plan and terminal expansion, and regional growth in the Goleta-Santa Barbara area. The traffic model also assumes key roadway improvements that are planned in the Goleta area. The two key improvements that would affect traffic in the project study area are discussed below. <u>U.S. Highway 101 Overcrossing</u>. A new freeway overcrossing is to be built approximately midway between the Storke Road and Hollister Avenue interchanges. The overcrossing would be constructed as a 2-lane roadway that will provide a new connection between Calle Real and ⁽b) V/C ratio does not apply to unsignalized locations. Value shown correlates to % change in entering traffic volumes. Hollister Avenue. The new freeway overcrossing will result in traffic reductions at the Storke Road and Hollister Avenue interchanges located east and west of the new crossing. <u>U.S. 101/Hollister Avenue Interchange</u>. Construction is currently underway on modifications to the existing U.S. Highway 101/Hollister Avenue interchange. The modifications consist of relocating the existing U.S. Highway 101 overcrossing to align with Cathedral Oaks Road. The relocated overcrossing will connect to Hollister Avenue south of the U.S. Highway 101, forming a "T" intersection. A new half-diamond interchange will be located at the Cathedral Oaks Road overcrossing, providing access to and from southbound U.S. Highway 101. Access to and from northbound U.S. Highway 101 will be provided via the existing ramps. Traffic signals will control the Cathedral Oaks/Calle Real, U.S. Highway 101 SB Ramps/Cathedral Oaks Road, and Cathedral Oaks, Road/Hollister Avenue intersections. A figure illustrating the proposed traffic controls and lane geometries at the new interchange is contained in the Technical Appendix for reference. #### **Cumulative Roadway Operations** Cumulative ADT volumes were developed based on the change in P.M. peak hour link volumes. The change in peak hour volumes was factored by a peak hour factor and then added to the existing ADT volumes. Table 8 lists the Cumulative and Cumulative + Project roadway volumes and identifies the impacts of the traffic additions based on the City of Goleta's capacity thresholds. Cumulative ADT volumes are shown on Figure 11 and Cumulative + Project ADT volumes are shown on Figure 12. Table 8 Cumulative and Cumulative + Project Roadway Volumes | Roadway Segment | Acceptable
Capacity | Cumulative
ADT | CU+Project
ADT | %
Change | Impact? | |--------------------------------------|------------------------|-------------------|-------------------|-------------|---------| | Cathedral Oaks w/o Glen Annie Road | 14,300 | 9,400 | 9,917 | 5.5% | No | | Glen Annie Road n/o U.S. Highway 101 | 14,300 | 9,900 | 10,359 | 4.6% | No | | Storke Road s/o U.S. Highway 101 | 34,000 | 40,500 | 40,701 | 0.5% | No | **Bolded** Items Exceed Acceptable Capacity. The data in Table 8 show that the segments of Cathedral Oaks Road west of Glen Annie Road and Glen Annie Road north of U.S. Highway 101 are forecast to carry volumes within their acceptable capacity designations with Cumulative and Cumulative+Project volumes. The segment of Storke Road south of U.S. Highway 101 is forecast to carry volumes that will exceed the acceptable capacity under Cumulative and Cumulative+Project conditions. The project would not impact this segment since project-generated traffic would increase the roadway volume by less than 1%. **FIGURE** FIGURE #### **Cumulative Intersection Operations** Levels of service were calculated for the study-area intersections using the Cumulative and Cumulative + Project traffic volumes presented on Figures 13 through 16. Tables 9 and 10 compare the Cumulative and the Cumulative + Project levels of service for the study-area intersections and identify cumulative impacts based on City thresholds. Table 9 Cumulative + Project A.M. Peak Hour Levels of Service | Intersection | Cumulative | | Cumulative +
Project | | Project
V/C | Impact? | |---|--------------|-----|-------------------------|-----|----------------|---------| | | ICU | LOS | ICU | LOS | Change | | | Cathedral Oaks Rd./Winchester Cyn Rd. (a) | 9.1 sec. | Α | 9.1 sec. | A | 0.009(b) | No | | U.S.101 NB- Calle Real/Winchester Cyn Rd. (a) | 9.0 sec. | Α | 9.0 sec. | Α | 0.002(b) | No | | Cathedral Oaks Rd/Northgate DrEvergreen Dr. (a) | 11.5 sec. | В | 11.5 sec. | В | 0.006(b) | No | | Cathedral Oaks Road/Alameda Avenue | 0.52 | Α | 0.54 | Α | 0.19 | No | | Cathedral Oaks Road/Glen Annie Road | 0.77 | . C | 0.79 | С | 0.02 | No | | U.S. 101 NB Ramps-Calle Real/Storke Road | 0.74 | С | 0.75 | С | 0.01 | No | | U.S. 101 SB Ramps/Storke Road | 0.94 | E | 0.94 | E | 0.005 | No | | Hollister Avenue/Storke Road | 0.73 | С | 0.74 | С | 0.003 | No | |
Cathedral Oaks Road/Calle Real | 0.54 | Α | 0.55 | Α | 0.002 | No | | U.S. 10 1 SB Ramps/Cathedral Oaks Road | 0.63 | В | 0.63 | В | 0.001 | No | | Cathedral Oaks Road/Hollister Avenue . | 0.5 <i>7</i> | Α | 0.57 | Α | 0.000 | No | ⁽a) Unsignalized Intersection. LOS based on average weighted delay in seconds per vehicle. ⁽b) V/C ratio does not apply to unsignalized locations. Value shown correlates to % change in entering traffic volumes. **Bolded** Items Exceed LOS C Operating Standard. Associated Transportation Engineers **CUMULATIVE A.M. PEAK HOUR TRAFFIC VOLUMES** FIGURE Associated T ransportation E ngineers CUMULATIVE P.M. PEAK HOUR TRAFFIC VOLUMES **FIGURE** ASSOCIATED T RANSPORTATION E NGINEERS CUMULATIVE + PROJECT A.M. PEAK HOUR TRAFFIC VOLUMES FIGURE MMF - #10086 CUMULATIVE + PROJECT P.M. PEAK HOUR TRAFFIC VOLUMES **FIGURE** MMF - #10086 Table 10 Cumulative and Cumulative + Project P.M. Peak Hour Levels of Service | Intersection | Cumulative | | Cumulative+
Project | | Project
V/C | Impact? | |--|------------|-----|------------------------|-----|----------------|---------| | | ICU | LOS | ICU | LOS | Change | • | | Cathedral Oaks Rd./Winchester Cyn. Rd. (a) | 8.3 sec. | Α | 8.3 sec. | Α | 0.017(b) | No | | U.S.101 NB- Calle Real/Winchester Cyn. Rd. (a) | 9.4 sec. | Α | 9.4 sec. | Α | 0.003 (b) | No | | Cathedral Oaks Rd./Northgate DrEvergreen Dr. (a) | 8.9 sec. | Α | 8.9 sec. | Α | 0.013(b) | No | | Cathedral Oaks Road/Alameda Avenue | 0.29 | Α | 0.32 | Α | 0.21 | No | | Cathedral Oaks Road/Glen Annie Road | 0.54 | Α | 0.57 | Α | 0.03 | No | | U.S. 101 NB Ramps-Calle Real/Storke Road | 0.74 | С | 0.75 | С | 0.009 | No | | U.S. 101 SB Ramps/Storke Road | 0.89 | D | 0.89 | D | 0.003 | No | | Hollister Avenue/Storke Road | 0.92 | E | 0.92 | E | 0.003 | No | | Cathedral Oaks Road/Calle Real | 0.54 | Α | 0.54 | Α | 0.001 | No | | U.S. 10 1 SB Ramps/Cathedral Oaks Road | 0.58 | Α | 0.58 | Α | 0.001 | No | | Cathedral Oaks Road/Hollister Avenue | 0.67 | В | 0.67 | В | 0.000 | No | ⁽a) Unsignalized Intersection. LOS based on average weighted delay in seconds per vehicle. The data presented in Tables 9 and 10 indicate that the project would not significantly impact the study-area intersections based on the City's cumulative traffic impact thresholds. #### SITE ACCESS AND CIRCULATION Access and site circulation would be provided via a looped roadway that would connect to Cathedral Oaks Road at two locations (see Figure 2 - Project Site Plan). The roadway connections would align with the existing residential roadways located on the south side of Cathedral Oaks Road. The new intersections would be controlled by stop signs on the side street approaches. Operations at the two access road intersections were analyzed assuming the Cumulative+Project traffic volumes. The methodology outlined in the Highway Capacity Manual for two-way stop sign controlled intersections was used for the evaluation. Table 11 presents the peak hour operations for the project roadway intersections under Cumulative+Project conditions. The Cumulative+Project intersection volumes and level of service forecasts are shown on worksheets contained in the Technical Appendix for reference. ⁽b) V/C ratio does not apply to unsignalized locations. Value shown correlates to % change in entering traffic volumes. **Bolded** Items Exceed LOS C Operating Standard. Table 11 Project Driveway Level of Service | . Intersection | A.M. Delay/LOS | P.M. Delay/LOS | |---|-----------------------------------|-----------------------------------| | West Roadway/Cathedral Oaks Road Inbound Left Turns Outbound Left & Right Turns | 7.5 Sec./LOS A
12.8 Sec./LOS B | 7.8 Sec./LOS A
11.4 Sec./LOS B | | East Roadway/Cathedral Oaks Road
Inbound Left Turns
Outbound Left & Right Turns | 7.6 Sec./LOS A
13.2 Sec./LOS B | 7.8 Sec./LOS A
11.6 Sec./LOS B | As shown, the two roadway connections at forecast to operate at LOS A-B, which is considered acceptable. The proposed roadway connections would operate sufficiently considering the volumes forecast for the project and the adjacent segment of Cathedral Oaks Road. #### **CONGESTION MANAGEMENT PROGRAM ANALYSIS** #### **Impact Criteria** The Santa Barbara County Association of Governments (SBCAG) has developed a set of traffic impact thresholds to assess the impacts of land use decisions made by local jurisdictions on regional transportation facilities located within the Congestion Management Program (CMP) roadway system. The following guidelines were developed by SBCAG to determine the significance of project-generated traffic impacts on the regional CMP system. - 1. For any roadway or intersection operating at "Level of Service" (LOS) A or B, a decrease of two levels of service resulting from the addition of project-generated traffic. - 2. For any roadway or intersection operating at LOS C, project-added traffic that results in LOS D or worse. - 3. For intersections within the CMP system with existing congestion, the following table defines significant impacts. | Level of Service | Project-Added
Peak Hour Trips | |------------------|----------------------------------| | LOS D | 20 | | LOS E | 10 | | LOS F | 10 | 4. For freeway segments with existing congestion, the following table defines significant impacts. | Level of Service | Project-Added
Peak Hour Trips | |------------------|----------------------------------| | LOS D | 100 | | LOS E | 50 | | LOS F | 50 | #### **Potential Intersection Impacts** The following study-area intersections are located within the CMP network: - Storke Road/U.S. Highway 101 NB Ramps - Storke Road/U.S. Highway 101 SB Ramps - Storke Road/Hollister Avenue Tables 6 and 7 indicate that the CMP intersections would operate at LOS C or better under Existing + Project conditions. The project would not generate significant project-specific impacts to the CMP network based on the CMP impact criteria. Tables 9 and 10 show that the U.S. Highway 101 SB Ramps/Storke Road intersection is forecast to operate at LOS E during the A.M. peak hour and at LOS D during the P.M. Peak hour, and that the Storke Road/Hollister Avenue intersection is forecast to operate at LOS E during the P.M. peak hour period under Cumulative + Project conditions. The project is forecast to add 20 or more trips to these locations, which would be considered a significant cumulative impact based on CMP criteria. The CMP requires that deficiency plans be prepared when an intersection reaches LOS E. The City of Goleta has adopted LOS D as the acceptable operating standard for the Storke Road/Hollister Avenue intersection. The GTIP was established to collect funds to implement future identified improvements within the City. The GTIP includes programmed improvements for the Storke Road corridor, which would return service levels to LOS C at the U.S. Highway 101 SB/Storke Road intersection and LOS D at the Storke Road/Hollister Avenue intersection. These improvements would thereby meet City standards and provide consistency with the CMP. The proposed project would be required to contribute traffic fees to the GTIP for implementation of the planned improvements. #### **Potential Freeway Impacts** The 2009 CMP report³ shows that the segment of U.S. Highway 101 between Storke Road and Los Carneros operates at LOS B during the A.M. peak hour and at LOS C during the P.M. peak hour. The proposed project is forecast to add 26 A.M. peak hour trips and 29 P.M. peak hour ³ 2009 Santa Barbara County Congestion Management Program, Santa Barbara County Association of Governments, June 18, 2009. trips to this segment of U.S. Highway 101. The CMP threshold for freeway impacts is 50 trips for segments operating at LOS E or LOS F and 100 trips for segments operating at LOS D. Based on these CMP impact criteria, the project would not generate a significant impact to U.S. Highway 101. #### REFERENCES AND PERSONS CONTACTED **Associated Transportation Engineers** Scott A. Schell, AICP, Principal Transportation Planner Dan Dawson, Supervising Transportation Planner Matthew Farrington, Transportation Planner I #### References <u>City of Goleta General Plan/Coastal Land Use Plan Final Traffic Forecast Report,</u> Dowling Associates, 2006. Highway Capacity Manual, Transportation Research Board, National Research Council, 2000. <u>Trip Generation</u>, Institute of Transportation Engineers, 8th edition, 2008. #### **Persons Contacted** Biega, Jim, City of Goleta Damkowitz, Jim, Dowling Associates Hansen, Alan, City of Goleta Miller, Patricia, City of Goleta Shultz, Marti, City of Goleta Wagner, Steve, City of Goleta #### **TECHNICAL APPENDIX** **CONTENTS:** LEVEL OF SERVICE DEFINITIONS CITY OF GOLETA ROADWAY DESIGN CAPACITIES TRAFFIC COUNT DATA #### INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS Reference 1 Winchester Canyon Road/Cathedral Oaks Road Reference 2 U.S. 101 NB Ramps- Calle Real/Winchester Canyon Road Reference 3 Cathedral Oaks Road/Northgate Drive-Evergreen Drive Reference 4 Cathedral Oaks Road/Alameda Avenue Reference 5 Glen Annie Road/Cathedral Oaks Road Reference 6 U.S. 101 NB Ramps/Glen Annie Road Reference 7 U.S. 101 SB Ramps/Storke Road Reference 8 Hollister Avenue/Storke Road Reference A Cathedral Oaks Road/Calle Real Reference B U.S. 101 SB Ramps/Cathedral Oaks Road Reference C Cathedral Oaks Road/Hollister Avenue DRIVEWAY LEVEL OF SERVICE CALCULATION WORKSHEETS TRAFFIC CONTROL AND LANE GEOMETRIES - CATHEDRAL OAKS INTERCHANGE CITY OF GOLETA TRAFFIC MODEL FORECASTS CITY OF GOLETA CUMULATIVE PROJECT LIST **LEVEL OF SERVICE DEFINITIONS** ## **Signalized Intersection Level of Service Definitions** | LOS | Delay | V/C Ratio | Definition | |-----|-------------|-------------
--| | A | < 10.0 | < 0.60 | Progression is extremely favorable. Most vehicles arrive during the green phase. Many vehicles do not stop at all. | | В | 10.1 - 20.0 | 0.61 - 0.70 | Good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay. | | С | 20.1 - 35.0 | 0.71 - 0.80 | Only fair progression, longer cycle lengths, or both, result in higher cycle lengths. Cycle lengths may fail to serve queued vehicles, and overflow occurs. Number of vehicles stopped is significant, though many still pass through intersection without stopping. | | D | 35.1 - 55.0 | 0.81 - 0.90 | Congestion becomes more noticeable. Unfavorable progression, long cycle lengths and high v/c ratios result in longer delays. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable. | | Е | 55.1 - 80.0 | 0.91 - 1.00 | High delay values indicate poor progression, long cycle lengths and high v/c ratios. Individual cycle failures are frequent | | F | > 80.0 | > 1.00 | Considered unacceptable for most drivers, this level occurs when arrival flow rates exceed the capacity of lane groups, resulting in many individual cycle failures. Poor progression and long cycle lengths may also contribute to high delay levels. | ^a Average control delay per vehicle in seconds. #### **Unsignalized Intersection Level of Service Definitions** The HCM¹ uses control delay to determine the level of service at unsignalized intersections. Control delay is the difference between the travel time actually experienced at the control device and the travel time that would occur in the absence of the traffic control device. Control delay includes deceleration from free flow speed, queue move-up time, stopped delay and acceleration back to free flow speed. | LOS | Control Delay
Seconds per Vehicle | |-----|--------------------------------------| | Α | < 10.0 | | В | 10.1 - 15.0 | | С | 15.1 - 25.0 | | D | 25.1 - 35.0 | | E | 35.1 - 50.0 | | F | > 50.0 | Highway Capacity Manual, National Research Board, 2000 ## **ASSOCIATED TRANSPORTATION ENGINEERS** 100 North Hope Avenue, Suite 4, Santa Barbara, CA 93110-1686 ● (805) 687-4418 ● FAX (805) 682-8509 CITY OF GOLETA ROADWAY DESIGN CAPACITIES Dowling Associates, Inc. Transportation Engineering • Planning • Research • Education | Table 5. Road | way Classification & Level of Servi | ce Th | | | | | | |-------------------------------------|---|---------|--------------------------|--------------------|---------|------------------------|--------------| | City of Goleta | | . AD | City of Go
T Design C | | | City of Go
C ADT Th | | | Functional Street
Classification | City of Goleia Purpose and Design Factors | i Lan | s 4 Lane | 4+
Lanes | 2 Lane | 4 Lanes | Lanes | | Major Arterial (MA) | Continuous roadways that carry through traffic between
various neighborhoods and communities, trequently
providing access to major traffic generators such as
shopping areas, employment centers, and higher densit
residential areas. Roadways would have a minimum of
floot wide taxes with shoulders. Signats are typically
spaced at a minimum 0.5-mile intervals. | y 17,90 | 42,480 | 58,750 | 14,300 | 34,000 | 47,000 | | Minor Arterial (MNA) | Roadways that serve as a secondary type of arterial facility carrying local and through traffic within communities, frequently connecting neighborhood areas within the City, providing access to shopping areas, employment centers, and higher density residential areas. Roadways would have a minimum of 12-foot wide lanes with shoulders. Signat Intervals typically range from 0.25 to 0.5 mile. | 15,700 | 37,680 | NA | 12,500 | 30,100 | ŅĄ | | Collector Streets (Cot) | Roadways designed to collect traffic from local streets and connect to major or minor arterials. Collector Streets provide access to local streets within residential and commercial areas and conect streets of higher calssifications to permit adequate traffic circulation. Generally no more than 2 travel lanes and signalized at Intersections with arterial roadways. | 11,600 | NA | NА | 9,280 | NA | NΑ | | Local Streets (L) | Roadways designed to provide access to individual properties carrying traffic to and from a collector street, intended to serve adjacent uses and are not intended for through traffic. Designed with two lanes and close to moderately close driveways. | 9,100 | NA | NА | 7,280 | NA | NA | | County
Functional Street | County | ADT | County
Design Cap | acity
4+ | LOSC | County
ADT Thre | shold
4+ | | Classification | Purpose and Design Factors | 2 Lanes | 4 Lanes | Lanes ¹ | 2 Lanes | 4 Lanes | Lanes' | | Primary 1 (P-1) | Roadways designed to serve primarily non-residential development. Roadways would have a minimum of 12-fool wide lanes with shoulders and few curb cuts. Signals would be spaced at 1 mile or more intervals. | 19,900 | 47,760 | NA | 15,900 | 38,200 | NA Parameter | | Primery 2 (P-2) | Roadways designed to serve a high proportion of non-
residentiat development with some residential fols and
few or no driveway curb culs. Roadways would have a
minimum of 12-foot wide fanes with few curb culs.
Signals spacing at minimum of 1/2 mile. | 17,900 | 42,480 | NA | 14,300 | 34,000 | HA. | | Primary 3 (P-3) | Roadways designed to serve non-residential development and residential development. More frequent driveways are acceptable. Potential signal spacing of ½ to Mile. | 15,700 | 37,680 | NA | 12,500 | 30,100 | NA. | | Secondary 1 (S-1) | Roadways designed to serve non-residential development and large tot residential development with well spaced driveways. Roadways would be 2-lanes with nifrequent driveways. Signals would generally occur at intersections of primary roadways. | 11,600 | NΑ | АИ | 9,300 | NA | NA | | Secondary 2 (S-2) | Roadways designed to serve residential and non-
esidential land uses. Roadways would be 2-lanes with
lose to moderately spaced driveways. | 9,100 | NA | NA | 7,300 | NA. | НA | | Secondary 3 (S-3) s | toadways designed to primarily serve residential with mell to medium size lots. Roadways would be 2-lanes with more frequent driveways. | 7,900 | ΝA | NA | 6,300 | NA | NA | ^{*} Source: City of Goleta & County of Santa Barbara Public Works Department TRAFFIC COUNT DATA Phone: (626) 564-1944 Fax: (626) 564-0969 ## INTERSECTION TURNING MOVEMENT COUNT SUMMARY CLIENT: PROJECT: DATE: DOWLING ASSOCIATES, INC. GOLETA TRAFFIC COUNTS THURSDAY FEBRUARY 7, 2008 PERIODS: 7:00 AM TO 9:00 AM AND 4:00 PM TO 6:00 PM INTERSECTION: N/S CATHEDRAL OAKS E/W WINCHESTER CANYON CITY: GOLETA | 15 MIN COUNTS | | | | THE REAL PROPERTY. | | 7:00 AM T | 0 9:00 AM | | | | | | | | | | | | | | |---|---|---|--|---|---|---
--|--|---|---|--|--|---|------------------|-------|--------------|------------|-------------|----------------------|-------------| | | 1 | 2 | 3 | - 4 | 5 | | 7 | 8 | | 10 | m | 12 | | | | | | | | | | PERIOD | SBRT | SBTH | | WBRT | WBTH | WBLT | NBAT | NBTH | NBLT | | EBTH | | TOTAL | AM PEAK | HOUR | 7 | | | | | | 700-715 | 1 | 11 | 3 | 12 | 3 | 6 | 6 | 11 | 1 | 8 | 4 | 7 | 73 | 715-6 | 315 | 1 | | | <u></u> | | | 715:730 | 2 | 17 | 0 | 17 | 4 | 4 | 3 | 18 | 2 | 14 | 3 | 4 | 88 | | | _ | 1 | | ~ | | | 730-745
745-800 | 0 | 19 | 2 | 13 | 9 | 4 | 0 | 44 | 3 | 15 | 5 | 11 | 125 | | 10 | 97 | 15 | | < 27 | | | 800-815 | 3 | 33
28 | 7 | 22 | 5 | 7 | 4 | 59 | 2 | 11 | 6 | 11 | 170 | | 1 | - 1 | - | | | A | | 815-830 | 5 | 28 | - 6 | 6 | 9 | 8 | 4 | 15 | 3 | 14 | 5 | 7 | 110 | | له | . ↓ | <u>ا</u> | | 23 | | | 830-845 | 0 | 13 | 2 | 4 | - 7 | 3 | 2 | 15 | 2 | 13 | 1 | 4 | 62 | | | | | | ₩ | مام | | 845-900 | 4 | 13 | 0 | 14 | 5 | 5 | 3 | 6 | 1 | 8 | 5 | 1 | 59 | | | A | | | | — 'N | | HOUR TOTALS | 7 | | Jac Sari | | | | U] | 12 | 1 | 9 | 6 | 3 | 65 | | 33 | · | ľ | ⁴7 | 1 1 | → ~[| | | 100 | | | | | nerses per la | | | | | | | | | | | | | | 1 | | TIME | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | No. | NBLT | 10 | 21 | 12 | | WISTCHESTE | R: 19 | | | 10 | 136 11 | | | 700-800 | 6 | 80 | 12 | 64 | 21 | 21 | 13 | WARRISH CHARLES AND THE PARTY | Samuel Compression Com | EBAT | EDIN | | TOTAL | | | | | | | | | 715-815 | 10 | 97 | 15 | 58 | 27 | 23 | 11 | 132 | 10 | 48
54 | 18 | 33 | 456 | | 54 | | | | | | | 730-830 | 10 | 88 | 16 | 45 | 30 | 22 | 10 | 133 | 10 | 54
53 | 19
17 | 33
33 | 493 | | | • | l | | CATHEDRAL | OAKS | | 745-845 | 10 | 82 | 16 | 46 | 22 | 23 | 13 | 95 | 8 | 46 | 17 | 23 | 467 | | | | | | | | | 800-900 | 11 | 58 | 9 | 35 | 22 | 21 | 9 | 48 | 7 | 44 | 17 | 15 | 401
296 | | | | | | | | | | | *** | | | | | | | | 77 | | ,-, | 4001 | 15 MIN COUNTS | | | | an Appenia | 4 | :00 PM TO |) 6:00 PM | 10177 | | | | | | | | | — <u>—</u> | | | | | 15 MIN COUNTS | 1 | 2 - | -3 | 4 | 4
5 | :00 PM TO |) 6:00 PM | 'a | S S S | 10 1 | i i | TO SHOULD HAVE A THE SHOOT OF THE | | | | | | | | | | 15 MIN COUNTS | 1 | 2
SBTH | 3 | 4 | 5 | :00 PM TO
6
WBLT |) 6:00 PM
.7
NBRT | a
NBTH | Q X
NBLT | 70
≘8#1 | r)
EB/Ti | ធា | | PM PEAK | HOUR | 1 | | | | | | 15 MINICOUNTS PERIOD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | (8) | 9 8
NBLT | 10
EBRT
7 | :
131
132}p}
4 | TO SHOULD HAVE A THE SHOOT OF THE | TOTAL | PM PEAK | |] | | | ^ | | | 15 MIN COUNTS PERIOD 400-415 415-430 | 1 | 2
SBTH | 3 | 4
WBRT | 5
WBTH | 6
WBLT | Z
NBRT | 8
NBTH | A | | SOURCE OF THE SECOND | g
DUG | | PM PEAK
415-5 | |] | | | ↑ 31 | | | 15 MIN GOUNTS PERIOD 400-415 A15-430 430-445 | 3 SBRT 4 2 5 5 | 2
SBTH
21
21
14 | 3 | WBRT
3 | 5
WBTH | S
WBLT | Z
NBRT
2 | 8
NBTH
9 | 0 | 7 | 4 | (5)
(5)
(5)
(5) | 70
82 | 1 | | 76 | 18 | | ^3 ₁ | | | 15 MIN COUNTS PERIOD 400-415 415-430 430-445 446-500 | SBRT
4
2 | 2
SBTH
21
21
14
22 | 3 SBLT 4 4 4 7 | 3
8
8
9 | ### ### ### ### ### ### ### ### #### #### | 8 WBLT 3 | NBRT | 8
NBTH
9 | 0
2 | 7 8 | 4
2 | (5)
(5)
(5)
(5) | 70 | 1 | | 76 | 18 | | 1 31 46 | A | | 15 MINICOUNTS PERIOD 400-415 415-430 430-445 445-500 500-515 | SBRT 4 2 5 3 4 | 21
21
21
14
22
19 | 3 | 3
8
8
9 | 11
15
11
6 | 8
WBLT
3
6 | NBRT 2 2 2 2 | 8
NBTH
9
6 | 0
2
2 | 7
8
10 | 4
2
3 | 12 ¥
EBL†
2
6
4 | 70
82
79 | 1 | | 76
↓ | 18 | | ↑31
←46 | 1 | | 15 MINICOUNTS PERIOD 400-415 415-430 430-445 445-800 500-515 515-530 | 1 SBRT 4 2 5 3 4 5 5 | 2
SBTH
21
21
14
22
19
17 | 3 SBLT 4 4 4 7 | 4
WBRT
3
8
8
9
6
7 | 5
WBTH
11
15
11
6
14 | 3 6 2 3 1 4 | NBRT 2 2 2 2 | 9
6
14 | 0
2
2
5 | 7
· 8
10
6 | 4
2
3
3 | 2
6
4
7 | 70
82
79
86 | 1 | | 76
↓ | 18 | | ↑31
←46
↓12 | 1. | | 15 MINICOUNTS PERIOD 400-415 415-430 430-445 445-500 500-515 515-630 530-545 | \$BRT 4 2 5 3 4 5 2 | 2 SBTH 21 21 14 22 19 17 17 | 3
SBLT*
4
4
4
7
3
5
7 | 4
WBRT
3
8
8
9
6
7
6 | 11
15
11
6
14
19 | WBLT 3 6 2 3 1 4 5 | 2
2
2
2
2
2
6
1 | 9
6
14
13
14
10
8 | 0
2
2
5
8 | 7
8
10
6
6
3
8 | 4
2
3
3
3
4
4 | 2
6
4
7 | 70
82
79
86
87 | 1 | |]
76
↓ | 18 | | ↑31
←46
↓12 | | | 15 MINICOUNTS PERIOD 400-415 A15-430 430-445 445-500 500-515 515-630 530-645 545-600 | \$BRT 4 2 5 3 4 5 2 4 4 4 | 2 SBTH 21 21 14 22 19 17 17 12 | 3 | 4 | ### ### ### ### ### ### #### #### ###### | WBLT 3 3 6 2 2 3 1 1 4 4 5 7 7 | 2
NBRT 2
2
2
2
2
6
1
4 | 9 6 14 13 14 10 8 8 | 0
2
2
5
8
3
3 | 7
8
10
6
6 | 4
2
3
3
3
4 | 12 Y EBIT 2 | 70
82
79
86
87
79 | 1 | | 76
↓ | 18 | • | ↑31
←46
12 | - * | | 15 MINICOUNTS PERIOD 400-415 A15-430 430-445 445-500 500-515 515-630 630-545 | \$BRT 4 2 5 3 4 5 2 | 2 SBTH 21 21 14 22 19 17 17 12 | 3 | 4 | ### ### ### ### ### ### #### #### ###### | WBLT 3 3 6 2 2 3 1 1 4 4 5 7 7 | 2
2
2
2
2
2
6
1 | 9 6 14 13 14 10 8 8 | 0
2
2
5
8
3
3 |
7
8
10
6
6
3
8
6 | 4
2
3
3
3
4
4 | 12 EBUT 2 6 4 7 3 1 1 2 4 | 70
82
79
86
87
79
75 | 1 | | 76
↓ | 18 | • | ↑ 31
← 46
↓ 12 | - * | | 15 MINICOUNTS PERIOD 400-415 415-430 430-445 445-500 500-515 515-630 530-545-6 545-600 HOUR TOTALS | \$BRT 4 2 5 3 4 5 2 4 4 4 4 4 4 4 4 4 | 2 SBTH 21 21 14 22 19 17 17 12 2 2 2 2 2 2 2 2 | 3 4 4 4 4 7 7 3 3 5 7 7 4 4 | ************************************** | ### 11 | WBLT 3 6 2 3 1 4 5 7 | 7 NBRT 2 2 2 2 2 6 1 1 4 2 2 7 | 8 NBTH 9 6 14 13 14 10 8 8 | 0
2
2
5
8
3
3
1 | 7
8
10
6
6
3
8
6 | 4
2
3
3
3
4
4
2
5 | 12 FB 1 | 701AL
70
82
79
86
87
79
75
68 | 1 | 14 | 76
↓
 | 18 | 17 | ↑ 31 | - * | | 15 MIN COUNTS PERIOD 400-415 A15-430 430-445 445-500 500-515 515-630 530-545 545-600 HOUR TOTALS | \$BRT 4 2 5 3 4 5 5 2 4 4 \$BRT | 2
SBTH 21
21
14
22
19
17
17
17
12 | 3 4 4 4 4 7 3 3 5 7 4 4 3 3 SBLT | 4 WBRT 3 8 8 9 6 7 6 7 6 7 4 WBRT | ### 11 | 3 6 2 3 1 4 5 7 | 7 NBRT 7 NBRT 7 NBRT 7 NBRT 7 | 9 6 14 13 14 10 8 8 NBTH | 0
2
2
5
8
3
3
1 | 7
8
10
6
6
3
8
6 | 4
2
3
3
3
4
4 | 12 EBLT 2 6 4 7 3 1 2 4 4 4 4 4 4 4 4 4 | 701AL
70
82
79
86
87
79
75
68 | 415-5 | 14 | 76
↓
 | 18 | 17 | ↑ 31 | * | | 15 MINICOUNTS PERIOD 400-415 415-430 430-445 445-500 500-515 515-530 530-545-5 545-600 HOUR TOTALS TIME 400-500 | SBRT 4 2 5 9 4 4 5 2 4 4 5 2 4 1 SBRT 14 | 2
SBTH 21
21
14
22
19
17
17
12
28
SBTH 78 | 3 4 4 4 4 7 3 5 5 7 4 4 3 5 8 8 E T 19 | 4 WBRT 3 8 8 9 6 7 6 7 4 WBRT 28 | ### ### ### ### ###################### | ### WBLT | 2 2 2 2 6 1 1 4 2 2 NBRT NBRT NBRT 8 | 8 NBTH 9 6 14 13 14 10 8 8 NBTH 4 42 | 0
2
2
5
8
3
3
1 | 7 8 10 6 6 3 8 6 2 10 2 3 1 | 4
2
3
3
3
4
2
5
5 | 12 M
EBLT 2
6 6
4 7
3 1
1 2
4 4
12 3
12 4 | 70 AL 71 | 415-5 | 14 | 76
↓ | 18 | 17 | ↑ 31 | - 1 | | 15 MIN COUNTS PERIOD 400-415 415-430 430-448 446-800 500-516 515-530 530-5456 546-600 HOUR TOTALS TIME 400-500 415-515 | SBRT 4 2 2 5 3 4 4 5 5 2 4 4 SBRT 1 14 14 | 2 SBTH | 3
BBLT
4
4
4
4
7
3
5
7
4
4
3
8BLT
19
18 | 4 WBRT 3 8 8 9 6 7 6 7 4 WBRT 28 31 | ## 10 | WBLT 3 6 2 3 1 4 5 7 WBLT 14 12 | ### A PRIT | 8 NBTH 9 6 14 13 14 10 8 8 NBTH 4 42 47 | 0 2 2 5 8 3 3 1 1 NBAT 9 17 | 7 8 10 6 6 6 3 8 6 6 10 3 1 3 1 3 3 0 | 4
2
3
3
3
3
4
2
5
5
11
EB314
12 | 12 M
EBLT 2
6 6
4 7
3 1
1 2
4 4
12 4
12 3
18 11 19 20 | 70 AL | 415-5 | 14 | 76
→ | 18 | | 12 | | | 15 MINICOUNTS PERIOD 400-415 415-430 430-445 446-800 500-815 515-530 530-545 545-600 HOUR-TOTALS 11ME 400-500 415-515 | SBRT 4 2 2 5 3 4 4 5 5 2 4 4 5 1 SBRT 1 1 4 1 4 1 7 1 7 | 2
SBTH
21
21
14
22
19
17
17
17
12
SBTH
78
76 | 3 BBLT 4 4 4 4 7 3 5 5 7 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 WBRT 3 8 8 9 6 7 7 6 7 7 4 WBRT 28 31 30 30 | 5 WBTH 11 15 11 6 11 11 8 8 WBTH 43 46 50 | WBLT 3 6 2 3 1 4 5 7 WBLT 14 12 10 | 7 NBRT 8 12 11 | 8 NBTH 9 6 14 13 14 10 8 8 8 2 NBTH 42 47 51 | 0 2 2 2 5 8 8 3 3 1 1 V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 8 10 6 6 6 3 8 6 6 10 3 3 1 3 3 0 2 5 | 4
2
3
3
3
3
4
2
5
5
11
12
11
13 | 12 EBLT 2 6 4 7 7 3 1 1 2 2 4 4 2 EBLT 19 20 15 | 707AL
70
82
79
86
87
79
75
68
707AL
317
334 | 415-5 | 14 | | 18 | | | | | 15'MIN'COUNTS PERIOD 400-415 415-420 430-445 446-500 500-515 515-530 530-6456 546-600 HOUR'FOTALS TIME 400-500 415-515 | SBRT 4 2 2 5 3 4 4 5 5 2 4 4 SBRT 1 14 14 | 2 SBTH | 3
BBLT
4
4
4
4
7
3
5
7
4
4
3
8BLT
19
18 | 4 WBRT 3 8 8 9 6 7 6 7 4 WBRT 28 31 | ## 10 | WBLT 3 6 2 3 1 4 5 7 WBLT 14 12 | ### A PRIT | 8 NBTH 9 6 14 13 14 10 8 8 NBTH 4 42 47 | 0 2 2 5 8 3 3 1 1 NBAT 9 17 | 7 8 10 6 6 6 3 8 6 6 10 3 1 3 1 3 3 0 | 4
2
3
3
3
3
4
2
5
5
11
EB314
12 | 12 M
EBLT 2
6 6
4 7
3 1
1 2
4 4
12 4
12 3
18 11 19 20 | 70 AL | 415-5 | 14 | | 18 | | | | ## **WILTEC** ## INTERSECTION TURNING MOVEMENT COUNT SUMMARY CLIENT: CITY OF GOLETA PROJECT: DATE: **GOLETA TRAFFIC COUNTS WEDNESDAY FEBRUARY 13, 2008** PERIODS: 7:00 AM TO 9:00 AM AND 4:00 PM TO 6:00 PM Phone: (626) 564-1944 Fax: (626) 564-0969 INTERSECTION: WINCHESTER CANYON ROAD N/S CALLE REAL/ US 101 NB RAMPS E/W CITY: GOLETA | 15 MIN COUNTS | | | | -32 | Marin and | 7:00 AM T | 0 9:00 AM | | | | | | | | | | | | |---|--|--|---|--|---|---|--|--|--|--|--|--|--------------------------|----------|--------------|--------------|-----------------------------|-----------------| | | 1 | 2 | 3 | .4 | 5 | - 6 | 7 | | e d | 10 (11) | 121 | | | | | | | | | PERIOD 700-715 | SBRT
21 | 881H | SBLT | and the second | | WBLT | | S. H. J. J. Hart 1987 20-50 | 307.3474.3811 AMMONTO | BAT MEBTH | THE PERSON NAMED IN COLUMN TWO IS NOT NAM | | AM PEAK HOU | 1 | | | A | | | 715-730 | 30 | | | | | 0 | - 0 | - 0 | <u> </u> | 0 0 | | 64 | 730-830 | | | | 90 | | | 730-745 | 30 | | | | | 0 | 0 | <u> </u> | 0 | 0 0 | | 77 | | | | 1 | | | | 745-800 | 59 | Ö | | | | o | - 0 | 0 | 0 | 0 0 | | 03 | | 64 0 | 0 | 1 | < 118 | | | 800-815 | 36 | 0 | O | | | 0 | 0 | | 0 | 0 0 | | 44
96 | | i i | 1 | | | | | 815-830 | 39 | 0 | 0 | 14 | | o | 0 | 0 | 0 | 0 0 | 7 | 84 | * | , | -> | 1 | ↓ | | | 830-845 | 25 | 0 | 0 | 22 | | 0 | o | 0 | 0 | 0 0 | | 79 | | | | | - | - W | | 845-900/ | 30 | 0 | 0 | 21 | 29 | 0 | 0 | 0 | 0 | 0 0 | *************************************** | 84 | | 55 | Ĺ | — | A | - J | | HOUR TOTALS | | He Talk Ma | | | AND IN SEC | | and a second | N. C. Walt | | | | | | 00 | | | - 1 - 1 - | | | | - 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 8 | 9 9 6 | 10 | // Sec. 12 Sec. 13 | | CALLE REAL/ US | 0 | - | | 1 1 | | | TIME | SBAT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBIT E | BATIE BBTH | ESLITOT | | | • | - | | 0 0 | | | 700-800 | 140 | 0 | 0 | | 112 | 0 | 0 | 0 | 0. | 0 0 | | 88 | | 0 | _ | 1 | | | | 716-815 | 155 | 0 | 0 | | 117 | 0 | 0 | 0 | 0 | 0 0 | 56 4 | 20 | | | ¥ | | WINCHESTER | CANYON | | 730-830
745-845 | 164 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 0 | 55 4 | 27 | | | | • | | | | /48-848
800-900 | 159
130 | 0 | | | 107 | . 0 | 0 | 0 | 0 | 0 0 | | 03 | | | | | | | | 300-800 | 130 | | 0 | 77 | 97 | 0 | O | o | 'nΙ | ol o | 39 3 | 43 | | | | | | | | | | | | | | | | | | <u> </u> | 35 3 | 43 | | | | | | | | 15 MIN COUNTS | # 12 7 0.03 | | | | | | | | o _l | 0 0 | 39 3 | 43 | | | | | | | | 15 MIN COUNTS | 1 | | i a | | | 4:00 PM TO | | | | | | 43 | | | | | | | | 15 MIN COUNTS |)
SBRT | 2
SBTH | 3 | 4 | .5 | 4:00 PM T0 | 0 6:00 PM | 8 | 9 | 70 ası | P P | | PM DEAK LOUI | | | | | | | | | 2
SBTH
0 | 3 | A
WBRT | , 5
WBTH | 4:00 PM TC
6
WBLT
| 0 6:00 PM
7
NBRT | | O
NBLTI E | 10 ú
Bri Eb ih | | | PM PEAK HOUI | | | | ^ | | | PERIOD" | 1
SBRT | | 3
SBLT | 4 | . 5
WBTH
22 | 4:00 PM T0
6
WBLT
0 | 0 6:00 PM | 8
NBTH | O
NBIST SE | 10 . 61
BRT EBTH
0 0 | (12)
(12)
(12) | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | PM PEAK HOU!
445-545 | | | 1 | ^ | | | PERIOD
400-415 | 1
SBRT
25 | 0 | 3
SBLT
0 | 42 | , 5
WBTH | 4:00 PM TC
6
WBLT | 0.6:00 PM
7
NBRT
0 | NBTH
0 | O
NBLTI E | 10 a1
BRT CENTH
0 0
0 0 | 12 1
14 1 | 10
01
23 | 445-545 | | | 1 | 201 | | | PERIOD # 400-415 415-430 430-445 445-800 | SBRT
25
41 | 0
0 | 3
SBLT
0
0 | 42
38 | WBTH 222 300 | GOOLPM TO | 0 6:00 PM
7
NBRT
0 | 8
NBTH
0
0 | NBLT E | 10 . 61
BRT EBTH
0 0 | 12 1
14 1
10 1 | 01
23
24 | 445-545 | 25 0 | o
I | 1 | ↑ | | | PERIOD 7 400-415 415-430 430-445 445-800 500-515 | 25
41
33
29
23 | 0
0
0 | 3
SBLT
0
0
0 | 42
38
50 | \$ WBTH 22 30 31 | 4:00 PM T0
6
WBLT
0
0 | 0 6:00 PM
7 7
NBRT 0
0 | 8
NBTH
0
0 | NBIST D | 0 0 0 0 0 0 0 0 | 12 1
14 1
10 1
12 1 | 10
01
23 | 445-545 | | Ů | | 201 | 1 | | PERIOD 400-415 415-430 430-445 445-800 500-515 515-530 | \$BRT
25
41
33
29
23
37 | 0
0
0 | 9 SBLT
0 0
0 0 | 42
38
50
39
43
72 | 8 WBTH 22 30 31 33 29 41 | 4500 PM T6
6
WBLT
0
0
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0 | NBLT E | 10 . 11
BRT EBTH
0 0
0 0
0 0 | 12 1
14 1
10 1
12 1
14 1
10 1
12 1
18 1 | 01
23
24
13 | 445-545 | | Ĺ | | ↑ | 1. | | PERIOD 400-415. 415-430. 430-445. 445-500. 500-515. 516-530. 530-545. | \$BRT
25
41
33
29
23
37
36 | 0
0
0
0
0 | \$ SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42
38
50
39
43
72
47 | 8 WBTH 22 30 31 33 29 41 41 | 4500 PM 16
6 WBLT 0
0 0
0 0
0 0 | 0 6:00 PM 7 7 NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 NBTH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 13
BRT CETH
0 0 0
0 0 0
0 0
0 0
0 0
0 0 | 12 11 12 11 12 11 18 11 9 11 | 01
23
24
13 | 445-545 | | Ļ | | ↑ | | | PERIOD 400-415. 415-430. 430-445. 445-800. 500-515. 516-530. 530-545. 545-800. | 25
41
33
29
23
37
36
30 | 0
0
0
0
0 | 3
SBLT
0
0
0
0
0
0 | 42
38
50
39
43
72
47
38 | 8 WBTH 22 30 31 33 29 41 | 4:00 PM T6 | 0 6:00 PM 7 NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0 | 9 E | 10 213
BRT CENTH
0 0 0
0 0
0 0
0 0
0 0 | 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 01
23
24
13
13
59 | 445-545 | | | 47 | ↑201
←144
↓0 | - \$\frac{1}{2} | | PERIOD 400-415. 415-430. 430-445. 445-500. 500-515. 516-530. 530-545. | 25
41
33
29
23
37
36
30 | 0
0
0
0
0 | 3
SBLT
0
0
0
0
0
0 | 42
38
50
39
43
72
47 | 8 WBTH 22 30 31 33 29 41 41 | 4:00 PM T6 | 0 6:00 PM 7 7 NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 13
BRT CETH
0 0 0
0 0 0
0 0
0 0
0 0
0 0 | 12 1
14 1
10 1
12 1
18 1
18 1
9 1
14 1
15 1 | 01
23
24
13
13
59
38
112 | 445-545 | | <u></u> | <u></u> | 144
↓ 0 | * | | PERIOD 400-415. 415-430. 430-445. 445-500. 500-515. 516-530. 530-545. 545-600. HOUR TOTALS | 33
25
41
33
29
23
37
36
30 | 0 0 0 0 0 0 | 3 SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42
38
50
39
43
72
47
38 | 88
WBTH
22
30
31
33
29
41
41
29 | 4:00 PM TS | D.6:00 PM
77
NBAT
0
0
0
0
0
0
0
0 | 8 NBTH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0 | 10 12 2 14 | 12 1
14 1
10 1
12 1
18 1
18 1
9 1
14 1
15 1 | 01
23
24
13
13
59
38
112 | 445-545 | | | — | 201
 | * | | PERIOD 400-415 415-430 430-445 445-800 500-515 516-530 530-645 545-800 HOUR TOTALS | \$BRT 25 41 33 29 23 37 36 30 | 0
0
0
0
0
0
0 | 3 SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42
38
50
39
43
72
47
38 | 88
WBTH
22
30
31
33
29
41
41
29 | 4:00 PM-TG | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 NBTH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | NBLT E | 10 11
BRT CETH
0 0 0
0 0
0 0
0 0
0 0
0 0
0 0 | 12 TOTAL TOT | 01
23
24
13
13
59
38
112 | 445-545
;
← | | | 4 7 | 144
↓ 0 ↑ 0 | * | | PERIOD 400-415 415-430 430-445 445-500 500-515 516-530 530-545 545-600 HOURITOTALS TIME 400-500 | \$BRT 25 41 33 29 23 37 36 30 \$\$BRT 128\$ | 0
0
0
0
0
0
0
0
0
0
8BTH | 3 SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42
38
50
39
43
72
47
38
48
WBRT
169 | 88
WBTH
22
30
31
33
29
41
41
29
WBTH
116 | 4:00 PM TG WBLT 0 0 0 0 0 0 0 0 0 WBLT | D. 8:00 PM 77 NBRT 0 0 0 0 0 0 0 0 0 0 NBRT 8 NBRT 8 | 8 NBTH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 13
BRT CETH
0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 | 12 1 101/
14 1 1 12 1 18 1 19 1 14 1 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 01
01
23
24
13
13
59
38
12
44
61 | 445-545
;
← | | | — | 144
↓ 0 ↑ 0 | \$\frac{1}{2} | | PERIOD 400-415 415-430 430-445 445-500 500-515 516-530 530-645 545-600 HOUR TOTALS TIME 400-500 415-515 | \$BRT 25 41 33 29 23 37 36 30 \$\$BRT 128 126 | 0
0
0
0
0
0
0
0
0
0
0
0
8
8
8
8
8
8
8
8 | 3 SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42
38
50
39
43
72
47
38
48
49
49
169
170 | 30
33
33
29
41
29
41
29
5
WBTH
116 | 4:00 PM TS WBLT 0 0 0 0 0 0 0 0 WBLT 5 WBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | D. 6:00 PM 77 NBRT 0 0 0 0 0 0 0 0 0 0 0 NBRT 8 NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 NBTH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0 | 10 131
BRT CENT
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
10 14
BRT EBTH
0 0 | ## 12 1 1 1 1 1 1 1 1 1 | 01
01
23
24
13
13
59
38
12
4
61 | 445-545
;
← | | | 1 | 144
↓ 0 ↑ 0 WINCHESTER | CANYON | | PERIOD 400-415 415-430 430-445 445-500 500-515 516-530 530-545 545-600 HOURITOTALS 11ME 400-500 415-515 430-530 530-530 | \$BRT 25 41 33 29 23 37 36 30 \$\$BRT 128 126 122 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 3 SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42
38
50
39
43
72
47
38
4
WBR1
169
170
204 | ### WBTH 22 30 31 33 29 41 41 29 #### #### 116 123 134 | 4:00 PM TS | 7 NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 11 11 11 11 11 11 11 11 11 11 11 11 1 | 12 1
12 1
14 1
10 1
12 1
18 1
9 1
14 1
15 1
15 1 | 01
23
24
13
13
13
59
38
12 | 445-545
;
← | | | | 144 | CANYON | | PERIOD 400-415 415-430 430-445 445-500 500-515 516-530 530-645 545-600 HOUR TOTALS TIME 400-500 415-515 | \$BRT 25 41 33 29 23 37 36 30 \$\$BRT 128 126 | 0
0
0
0
0
0
0
0
0
0
0
0
8
8
8
8
8
8
8
8 | 3 SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42
38
50
39
43
72
47
38
48
49
49
169
170 | 30
33
33
29
41
29
41
29
5
WBTH
116 | 4:00 PM TS WBLT 0 0 0 0 0 0 0 0 WBLT 5 WBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | D. 6:00 PM 77 NBRT 0 0 0 0 0 0 0 0 0 0 0 NBRT 8 NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 NBTH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0 | 10 131
BRT CENT
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
10 14
BRT EBTH
0 0 | 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 01
01
23
24
13
13
59
38
12
4
61 | 445-545
;
← | | | — | 144 | CANYON | # **ASSOCIATED TRANSPORTATION ENGINEERS** INTERSECTION TURNING MOVEMENT SUMMARY | | | | | | *************************************** | | | | | | | | | - 0 | | |--|----------------------------------|--|---------------------------------------|---|---|--|---|--|--|---|--|--|--|-----------------------------------
---| | | | CATHEDRAL | | - | PROJE | CT #: 10 | 086 | COUNT DA | | | | FILE NAME | | 03AM | | | N-S Approac | | NORTHGA | | | | | | COUNT TIM | | 07:00 AM | то | 9:0 | | | | | E-W Approac | ch: | CATHEDR | AL OAKS | • | | × | | CITY: GOLE | ETA | | | WEATHER | | SUNNY | <i>-</i> | | DF A 1/ 11/ | OLID. | | ٦ ١ | · · · · · · · · · · · · · · · · · · · | | | | ٨ | 1 | | | LTR | | | | | PEAK HO | JUK: | 07:30 AM | ј то | 08:30 A | M | | | /[[/ | - 1 | | | | | | | | | | | | | | | | | 1 | İ | | A DDD.C | 24611 | | 1 тр | | | | | 4 | 4 | 22 | 7 | | NORTH | 1 | | | APPRO
LAN | | | LTR | | | | | <u> </u> | 1 | 23 | J | | | | LTR | | LAN | NEO | | J | | | | | | | | | ٦ | | i | LIK | | | | | | | | | | ,
, | i | 1 | | | | 1 | | | | | | | | | | ^ | < <u>-</u> | V | '
-> | ^ | | | | | _ | | | | | | ſ | 3 | 1 | | V | | | 7 | | | CONTROL TYP | <u>'E:</u> | NONE | | | | | L | 3 | 1 | | TOTAL | | | - | | | ARRIVAI | / DE | PARTURE | VOLLI | MFS | | | ſ | 345 | | ſ | 633 | 7 | | 142 | | ı | AKKIYA | . / DL | AKIOKL | VOLU | ITLS | | | L | 545 | 1 | | | | ` | 142 | | 1 | | | 28 | 10 |] | | | ſ | 5 | 1 | | | | | 19 | | 1 | | | | //\ | , | | | CATHEDRAL | | ĺ | <- | ^ | | v | | | • | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | .,. | | | | CAINEDRAL | UAKS | • | \ <u> </u> | 1 | ·-> | V | | | ! | 155 | <- | /// | ı | | 168 | | | | | 1 | 1 | !
 | | | | 1 | 133 | \ <u> </u> | | | \- <u>-</u> | 100 | | | | | · · · · · · · · · · · · · · · · · · · | . <u>. </u> | | | _ | | ,
 | 353 | -> | | | -> | 443 | | | | | 9 | 0 | 75 |] | | | i | | | 1 | /{\ | | | | | | NORTHGATE- | EVERGREE | N | | _ | | | Ì | | | \J/ | i | | | | | | | | | | | | | ĺ | | | 25 | 84 | | | | | | | | | | | | | i | TIA | AE PER | IOD | N | ORTHBOU | ۷D | | OUTHBOU | DND | | EASTBOUND | | WE | STBOUND | | TOTA | | From | ME PER | IOD
To | N
Left | ORTHBOU!
Thru | ND
Right | Left | OUTHBOU
Thru | JND
Right | Left | EASTBOUND
Thru | Right | WE
Left | STBOUND
Thru | Right | 1 | | | ME PER | | | | | Left | | 1 | | | Right | | | | 1 | | | AE PER | | | | | Left | Thru | Right | | Thru | | Left | | | VOLUM | | 97:00 AM | | То | | Thru | Right | Left
C O | Thru
UNT | Right DAT | A | | Right 0 1 | | Thru | | VOLUM | | From | | 07:15 AM | Left 1 | Thru
O | Right 13 | Left C O | Thru UNT 0 | Right DAT | A | Thru 25 | 0 | Left 2 | Thru 8 | Right | VOLUM | | 77:00 AM
07:15 AM
07:30 AM | | 07:15 AM
07:30 AM | 1 2 5 8 | Thru O O | 13
25
52
70 | C O 3 18 27 35 | UNT
0
0 | Pright DAT | 0
3 | 25
64
144
306 | 0 | 2 7 12 18 | 8
18
43
85 | Right 1 2 | 14
25
54 | | 97:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM | 1
2
5
8
10 | 0
0
0
0
0 | 13
25
52
70
82 | 3
18
27
35
37 | Thru UNT 0 0 0 0 0 0 | Right D A T 1 3 3 3 5 | 0
3
4
4
5 | 25
64
144
306
358 | 0
1
1
4
4 | 2
7
12
18
22 | 8
18
43
85
139 | 1 2 4 7 9 | VOLUM
14
29
54 | | 97:00 AM
07:15 AM
07:30 AM
97:45 AM
08:00 AM
08:15 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM | 1
2
5
8
10 | 0
0
0
0
0
0
0 | 13
25
52
70
82
100 | 3
18
27
35
37
41 | 0
0
0
0
0
0 | Pight DAT 1 3 3 3 5 7 | 0
3
4
4
5
6 | 25
64
144
306
358
409 | 0
1
1
4
4
6 | 2
7
12
18
22
26 | 8
18
43
85
139
160 | 1
2
4
7
9 | 14
29
54
67 | | 97:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | 1 2 5 8 10 11 11 | 0
0
0
0
0
0
0 | 13
25
52
70
82
100
112 | C O 3 18 27 35 37 41 48 | Thru UNT 0 0 0 0 0 1 1 | Pight D A T 1 3 3 3 5 7 8 | 0
3
4
4
5
6 | 25
64
144
306
358
409
438 | 0
1
1
4
4
6
7 | 2
7
12
18
22
26
32 | 8
18
43
85
139
160
176 | 1 2 4 7 9 9 13 | 14
29
54
67
77
85 | | 07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM | 1
2
5
8
10 | 0
0
0
0
0
0
0
0 | 13
25
52
70
82
100
112
130 | 3
18
27
35
37
41
48
57 | Thru UNT 0 0 0 0 0 1 1 1 | Right D A T 1 3 3 5 7 8 8 | 0
3
4
4
5
6
6
8 | 25
64
144
306
358
409 | 0
1
1
4
4
6 | 2
7
12
18
22
26 | 8
18
43
85
139
160 | 1
2
4
7
9 | 14
29
54
62
72 | | 97:00 AM
07:15 AM
07:30 AM
97:45 AM
08:00 AM
08:15 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | 1 2 5 8 10 11 11 | 0
0
0
0
0
0
0
0 | 13
25
52
70
82
100
112 | 3
18
27
35
37
41
48
57 | Thru UNT 0 0 0 0 0 1 1 1 | Pight D A T 1 3 3 3 5 7 8 | 0
3
4
4
5
6
6
8 | 25
64
144
306
358
409
438 | 0
1
1
4
4
6
7 | 2
7
12
18
22
26
32 | 8
18
43
85
139
160
176 | 1 2 4 7 9 9 13 | VOLUM
14
29
54
67 | | 07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | 1 2 5 8 10 11 11 | 0
0
0
0
0
0
0
0 | 13
25
52
70
82
100
112
130 | 3
18
27
35
37
41
48
57 | Thru UNT 0 0 0 0 0 1 1 1 | Right D A T 1 3 3 5 7 8 8 | 0
3
4
4
5
6
6
8 | 25
64
144
306
358
409
438 | 0
1
1
4
4
6
7 | 2
7
12
18
22
26
32 | 8
18
43
85
139
160
176 | 1 2 4 7 9 9 13 | 14
29
54
62
72 | | 07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
09:00 AM | 1
2
5
8
10
11
11 | 0
0
0
0
0
0
0
0 | 13
25
52
70
82
100
112
130 | C O 3 18 27 35 37 41 48 57 | Thru UNT 0 0 0 0 1 1 1 BY | Right DAT 1 3 3 3 5 7 8 8 8 PERIO | 0
3
4
4
5
6
6
8
D | 25
64
144
306
358
409
438
474 | 0
1
1
4
4
6
7
7 | 2
7
12
18
22
26
32
38 | 8
18
43
85
139
160
176
195 | 1 2 4 7 9 9 13 15 | 14
29
54
62
77
85
94 | | 07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
09:00 AM | 1
2
5
8
10
11
11 | 0
0
0
0
0
0
0
0 | 13
25
52
70
82
100
112
130 | Left C O 3 18 27 35 37 41 48 57 L 3 | Thru UNT 0 0 0 0 1 1 1 BY | Right DAT 1 3 3 5 7 8 8 PERIO | 0
3
4
4
5
6
6
8
D | 25
64
144
306
358
409
438
474 | 0
1
1
4
4
6
7
7 | 2
7
12
18
22
26
32
38 | 8
18
43
85
139
160
176
195 | Right 1 2 4 7 9 9 13 15 | 14
29
54
65
77
85
94 | | 07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
07:00 AM
07:15 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
09:00 AM | 1 2 5 8 10 11 11 11 11 11 | 0
0
0
0
0
0
0
0 | 13
25
52
70
82
100
112
130
TOTA | 3
18
27
35
37
41
48
57
L | 0
0
0
0
0
1
1
1
1
B Y | Right DAT 1 3 3 5 7 8 8 PERIO | 0
3
4
4
5
6
6
8
D
0
3 | 25
64
144
306
358
409
438
474 | 0
1
1
4
4
6
7
7 | 2
7
12
18
22
26
32
38 | 8
18
43
85
139
160
176
195 | 1 2 4 7 9 9 13 15 | 14
29
54
67
77
85
94 | | 07:00 AM
07:15 AM
07:45 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
07:00 AM
07:30 AM
07:30 AM |

 | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
09:00 AM
07:15 AM
07:30 AM | 1 2 5 8 10 11 11 11 11 11 1 1 1 3 | 0
0
0
0
0
0
0
0 | 13
25
52
70
82
100
112
130
TOTA | Left CO 3 18 27 35 37 41 48 57 L 3 15 9 | 0
0
0
0
0
1
1
1
1
B Y | Right D A T 1 3 3 5 7 8 8 PERIO | 0
3
4
4
5
6
6
8
D
0
3
1 | 25
64
144
306
358
409
438
474 | 0
1
1
4
4
6
7
7 | 2 7 12 18 22 26 32 38 | 8
18
43
85
139
160
176
195 | 1 2 4 7 9 9 13 15 | VOLUM
14
29
54
62
77
85
94 | | 07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:30 AM
08:45 AM
07:00 AM
07:15 AM
07:30 AM
07:45 AM |

 | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
09:00 AM
07:15 AM
07:30 AM
07:45 AM | 1 2 5 8 10 11 11 11 1 1 1 3 3 3 | O O O O O O O O O O O O O O O O O O O | 13
25
52
70
82
100
112
130
TOTA | Left CO 3 18 27 35 37 41 48 57 L 3 15 9 8 | Thru UNT 0 0 0 0 1 1 1 BY 0 0 0 | Right DAT 1 3 3 5 7 8 8 PERIO | 0
3
4
4
5
6
6
8
D
0
3
1 | 25
64
144
306
358
409
438
474 | 0
1
1
4
4
6
7
7 | 2 7 12 18 22 26 32 38 | 8
18
43
85
139
160
176
195 | 1 2 4 7 9 9 13 15 1 1 2 3 | 14
29
54
62
77
85
94 | | 07:00
AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
07:15 AM
07:30 AM
07:30 AM
07:45 AM
08:00 AM |

 | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
09:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM | 1 2 5 8 10 11 11 11 1 1 1 3 3 3 | 0
0
0
0
0
0
0
0 | 13
25
52
70
82
100
112
130
TOTA
13
12
27
18
12 | 3 18 27 35 37 41 48 57 4 1 5 9 8 2 | Thru UNT 0 0 0 0 1 1 1 BY 0 0 0 | Right DAT 1 3 3 5 7 8 8 PERIC 1 2 0 0 2 | 0
3
4
4
5
6
6
8
D
0
3
1
0 | 25
64
144
306
358
409
438
474
25
39
80
162
52 | 0
1
1
4
4
6
7
7 | 2 7 12 18 22 26 32 38 | 8
18
43
85
139
160
176
195 | 1 2 4 7 9 9 13 15 1 1 2 3 2 | VOLUM
14
29
54
67
77
85
94
15
24
13 | | 07:00 AM
07:15 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
07:45 AM
07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:15 AM
08:30 AM |

 | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
09:00 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM | 1 2 5 8 10 11 11 11 11 3 3 2 1 | O O O O O O O O O O O O O O O O O O O | 13 25 52 70 82 100 112 130 TOTA 13 12 27 18 12 18 | Left CO 3 18 27 35 37 41 48 57 15 9 8 2 4 | Thru UNT 0 0 0 0 1 1 1 BY 0 0 0 1 | Right DAT 1 3 3 5 7 8 8 PERIO 1 2 0 0 2 2 | 0
3
4
4
5
6
6
8
DD | 25
64
144
306
358
409
438
474
25
39
80
162
52
51 | 0
1
1
4
4
6
7
7 | 2 7 12 18 22 26 32 38 | 8
18
43
85
139
160
176
195 | 1 2 4 7 9 9 13 15 1 1 2 3 2 0 | 14
29
54
62
77
83
94
15
24
13 | | 07:00 AM
07:15 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
07:00 AM
07:15 AM
07:30 AM
07:30 AM
07:45 AM
07:30 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
09:00 AM
07:45 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM | 1 2 5 8 10 11 11 11 11 3 3 2 1 0 | O O O O O O O O O O O O O O O O O O O | 13 25 52 70 82 100 112 130 TOTA 13 12 27 18 12 18 12 18 12 | 3 18 27 35 37 41 48 57 L 3 15 9 8 2 4 7 9 | Thru UNT 0 0 0 0 1 1 1 1 BY 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Right DAT 1 3 3 3 5 7 8 8 PERIO 1 2 0 0 2 2 1 | 0
3
4
4
5
6
6
8
D
0
3
1
0
1
1
0
2 | 25
64
144
306
358
409
438
474
25
39
80
162
52
51
29 | 0
1
1
4
4
6
7
7
0
1
0
3
0
2 | 2 7 12 18 22 26 32 38 | 8 18 43 85 139 160 176 195 8 10 25 42 54 21 16 | 1 2 4 7 9 9 13 15 1 1 2 3 2 0 4 | 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | 07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
09:00 AM
07:45 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM | 1 2 5 8 10 11 11 11 11 3 3 2 1 0 | O O O O O O O O O O O O O O O O O O O | 13 25 52 70 82 100 112 130 TOTA 13 12 27 18 12 18 12 18 12 18 | Left CO 3 18 27 35 37 41 48 57 A L 3 15 9 8 2 4 7 9 URL | Thru UNT 0 0 0 0 1 1 1 1 BY 0 0 0 1 7 T | Right DAT 1 3 3 5 7 8 8 PERIO 1 2 0 0 2 2 1 0 | O 3 4 4 5 6 6 8 8 D D O 3 1 0 1 1 0 2 S | 25
64
144
306
358
409
438
474
25
39
80
162
52
51
29
36 | 0
1
1
4
4
6
7
7 | 2 7 12 18 22 26 32 38 | 8 18 43 85 139 160 176 195 | 1 2 4 7 9 9 13 15 1 1 2 3 2 0 4 | 12-5-6-7-8-9-4-11-11-11-11-11-11-11-11-11-11-11-11-1 | | 07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
07:30 AM
07:15 AM
07:30 AM
07:45 AM
08:30 AM
08:45 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
09:00 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | 1 2 5 8 10 11 11 11 11 3 3 2 1 0 0 | O O O O O O O O O O O O O O O O O O O | 13 25 52 70 82 100 112 130 1 O T A | 3 18 27 35 37 41 48 57 L 3 15 9 8 2 4 7 9 | Thru UNT 0 0 0 0 1 1 1 1 BY 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Right DAT 1 3 3 5 7 8 8 PERIO 1 2 0 0 2 2 1 0 OTAL: | 0
3
4
4
5
6
6
8
D
0
3
1
0
1
1
0
2 | 25
64
144
306
358
409
438
474
25
39
80
162
52
51
29 | 0
1
1
4
4
6
7
7
0
1
0
3
0
2 | 2 7 12 18 22 26 32 38 | 8 18 43 85 139 160 176 195 8 10 25 42 54 21 16 | 1 2 4 7 9 9 13 15 1 1 2 3 2 0 4 2 | VOLUM 14 29 54 62 77 83 94 15 24 13 10 | | 07:00 AM
07:15 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
07:45 AM
08:45 AM
07:00 AM
07:45 AM
08:45 AM
08:15 AM
08:15 AM
08:15 AM
08:15 AM
08:15 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM
09:00 AM
07:30 AM
07:45 AM
08:00 AM
08:45 AM
08:00 AM | 1 2 5 8 10 11 11 11 11 11 3 3 2 1 0 0 | O O O O O O O O O O O O O O O O O O O | 13 25 52 70 82 100 112 130 1 O T A 13 12 27 18 12 18 12 18 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | Left CO 3 18 27 35 37 41 48 57 A L 3 15 9 8 2 4 7 9 U R L 35 | Thru UNT 0 0 0 0 1 1 1 1 BY 0 0 0 1 0 0 7 T 0 | Right DAT 1 3 3 5 7 8 8 PERIO 1 2 0 0 2 1 0 OTAL: | 0
3
4
4
5
6
6
8
DD
0
3
1
0
1
1
0
2
S | 25
64
144
306
358
409
438
474
25
39
80
162
52
51
29
36 | 0
1
1
4
4
6
7
7
0
1
0
3
0
2
1
0 | 2 7 12 18 22 26 32 38 2 5 6 4 6 6 | 8 18 43 85 139 160 176 195 8 10 25 42 54 21 16 19 | Right 1 2 4 7 9 9 13 15 | VOLUM
14
29
54
67
77
85
94 | | 77:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM | | 07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
09:00 AM
07:45 AM
07:45 AM
08:30 AM
08:15 AM
08:45 AM
08:30 AM
08:45 AM | 1 2 5 8 10 11 11 11 11 11 3 3 2 1 0 0 | Thru O O O O O O O O O O O O O O O O O O O | 13 25 52 70 82 100 112 130 TOTA 13 12 27 18 12 18 12 18 HO 69 | Left CO 3 18 27 35 37 41 48 57 L 3 15 9 8 2 4 7 9 URL 35 34 | Thru UNT 0 0 0 0 1 1 1 1 1 BY 0 0 0 7 T 0 0 0 | Right DAT 1 3 3 3 5 7 8 8 PERIO 1 2 0 0 2 2 1 0 OTALS | 0
3
4
4
5
6
6
8
D
0
3
1
0
1
1
0
2
S | 25
64
144
306
358
409
438
474
25
39
80
162
52
51
29
36 | 0
1
1
4
4
6
7
7
0
1
0
3
0
2
1
0 | 2 7 12 18 22 26 32 38 2 5 6 4 6 6 18 20 | 8 18 43 85 139 160 176 195 8 10 25 42 54 21 16 19 | Right 1 2 4 7 9 9 13 15 | VOLUM 14 29 54 66 77 88 94 15 24 13 10 54 61 | # **ASSOCIATED TRANSPORTATION ENGINEERS** INTERSECTION TURNING MOVEMENT SUMMARY | I-S Approach:
-W Approach: | OCATHEDRAL
NORTHGA
CATHEDRA | TE-EVERO | | PROJEC | T#: 100 | 86 | COUNT DATE COUNT TIME CITY: GOLE | lE: | 04:00 P.M. | то | FILE NAME:
6:00
WEATHER: |) | 03PM
SUNNY | , | |--|--|--|---|---|--|---|----------------------------------|---|---|--|---|---|--|---------------------------------| | PEAK HOUR | 04:45 PM |] от [| 05:45 PM | | | | ۸
/۱۱۱
۱۱ | | | | LTR | | | | | | , | 1 | 3 | 16 |] | | NORTH | 1 | LTD | | APPRO.
LANI | | | LTR | | | | ! | 1 | l i | | | | 1 | LTR | | | | | • | | | ^ | < <u>-</u> | v | -> | ^ | | l | 1
1 | CONTROL TYP | E: | NONE | | | | | 4 | | r | TOTAL | 7 | ' | 32 | |
 | ARRIVAL | / DE | PARTURE | VOLUA | MES | | | 129 | | L | 458 | J | < | 146 | | | | | 20 | 36 | | | | 6 | ┤ | | ^ | | , | 73 | | 1 | | | 1 | //\ | | | | ATHEDRAL OAKS | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | < <u> </u> | I | >
! | V | | | i | 148 | <- | \ / | 1 | <- | 251 | | | | | | | | | | l
, | 139 | -> | | | | 192 | | | | 1 | 0 | 47 | | | | 1 | 133 | | . 1 | / \ | | 192 | | | NORTHGATE- | EVERGREEN | l | | | | | !
 | | | \ /
 82 | 48 | | | | TIME PI | RIOD | | ORTHBOUNI | | SC | OUTHBOL | JND | | EAST8OUND | | WES | TBOUND | | тот | | From | To [| Left | Thru | Right | VOLUI | | | | | | | 7. | UNT | DAT | A | | | 10 | | | | | 4:00 PM —
4:15 PM — | 04:15 PM
04:30 PM | 1 | 0
0 | 5
10 | 4
7 | 0 | 0 | 1
1 | 33
67 | 1
4 | 13
21 | 32
70 | 6
7 | 1 | | 4:30 PM — | 04:30 PM
04:45 PM | 1 | 1 | 12 | 12 | 0 | 2 | 4 | 95 | 4 | 31 | 95 | 12 | 2 | | 1:45 PM — | 05:00 PM | 1 | 1 | 30 | 18 | 0 | 2 | 5 | 127 | 6 | 41 | 129 | 22 | 3 | | 5:00 PM — | 05:15 PM | 1 | 1 | 39 | 21 | 2 | 2 | 6 | 165 | 9 | 60 | 162 | 30 | 4 | | | | | | 22 1 | | | 1 | O | | | | | | | | | 05:30 PM | 2 | 1 | 53 | | 2 | | - | | , | | | | 6 | | 5:15 PM — | 05:30 PM
05:45 PM | 2
2 | 1
1 | | 26
28 | 2
3 | 3 3 | 8
8 | 199
224 | 10
10 | 80
104 | 202
241 | 3 <i>7</i> | | | ::15 PM —
::30 PM — | 1 | | | 53 | 26 | | 3 | 8 | 199 | 10 | 80 | 202 | | 7 | | ::15 PM —
::30 PM — | 05:45 PM | 2 |
1
1 | 53
59 | 26
28
30 | 3 | 3 | 8
8
9 | 199
224 | 10
10 | 80
104 | 202
241 | 37
44 | 7 | | ::15 PM —
::30 PM —
::45 PM — | 05:45 PM
06:00 PM | 2 2 | 1
1
T | 53
59
67
O T A | 26
28
30
L E | 3
3
3
7 | 3 3 4 | 8
8
9
D | 199
224
251 | 10
10
11 | 80
104
117 | 202
241
277 | 37
44
58 | 7 | | ::15 PM —
::30 PM —
::45 PM —
4:00 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM | 1 0 | 1
1
T | 53
59
67
OT A | 26
28
30
L E | 3
3
B Y
0
0 | 3
3
4
PERIC | 8
8
9
D | 199
224
251
33
34 | 10
10
11
11 | 80
104
117 | 202
241
277
32
38 | 37
44
58 | 8 | | 4:00 PM —
4:30 PM —
4:00 PM —
4:15 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM | 1
0
0 | 1
1
T
0
0 | 53
59
67
O T A | 26
28
30
L E | 3
3
3
7
0
0 | 3
3
4
PERIC | 8
8
9
D
1
0
3 | 199
224
251
33
34
28 | 10
10
11
1
3
0 | 80
104
117 | 202
241
277
32
38
25 | 37
44
58
6
1
5 | 8 | | 4:00 PM —
4:30 PM —
4:00 PM —
4:30 PM —
4:30 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM | 1
0
0 | 1
1
T
0
0
1 | 53
59
67
O T A | 26
28
30
L E | 3
3
3
7
0
0
0 | 3
3
4
PERIC | 8
8
9
D
1
0
3
1 | 199
224
251
33
34
28
32 | 10
10
11
1
1
3
0
2 | 104
117
13
8
10 | 202
241
277
32
38
25
34 | 37
44
58
6
1
5
10 | 7
8 | | 4:00 PM —
4:00 PM —
4:30 PM —
4:15 PM —
4:30 PM —
4:45 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM
05:15 PM | 1
0
0
0 | 1
1
T
0
0
1
0 | 53
59
67
OTA
5
5
2
18
9 | 26
28
30
L E
4
3
5
6
3 | 3
3
B Y
0
0
0
0 | 3
3
4
PERIC | 8
8
9
1
0
3
1
1 | 199
224
251
33
34
28
32
38 | 10
10
11
1
3
0
2
3 | 80
104
117
13
8
10
10 | 202
241
277
32
38
25
34
33 | 37
44
58
6
1
5
10
8 | 7
8
1
1 | | 4:00 PM — 4:15 PM — 4:00 PM — 4:15 PM — 4:30 PM — 4:45 PM — 5:00 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM
05:15 PM
05:30 PM | 2
2
1
0
0
0
0 | 1
1
T | 53
59
67
OTA
5
5
2
18
9
14 | 26
28
30
L E | 3
3
3
8 Y
0
0
0
0
0
2
0 | 3
3
4
PERIC | 8
8
9
1
0
3
1
1
2 | 199
224
251
33
34
28
32
38
34 | 10
10
11
1
3
0
2
3 | 80
104
117 | 202
241
277
32
38
25
34
33
40 | 37
44
58
6
1
5
10
8
7 | 7
8
1
1 | | 4:00 PM — 4:00 PM — 4:15 PM — 4:30 PM — 4:45 PM — 5:00 PM — 5:15 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM
05:15 PM
05:30 PM
05:35 PM | 1
0
0
0
1 | 1
1
0
0
1
0
0
0 | 53
59
67
OTA
5
5
2
18
9
14
6 | 26
28
30
L E
4
3
5
6
3
5 | 3
3
3
3
7
0
0
0
0
2
0 | 3
3
4
PERIC | 8
8
9
1
0
3
1
1 | 199
224
251
33
34
28
32
38
34
25 | 10
10
11
1
3
0
2
3 | 80
104
117
13
8
10
10
19
20
24 | 202
241
277
32
38
25
34
33
40
39 | 37
44
58
6
1
5
10
8
7 | 7
8
1
1
1 | | 4:00 PM —
4:00 PM —
4:15 PM —
4:30 PM —
4:45 PM —
4:45 PM —
5:00 PM —
5:15 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM
05:15 PM
05:30 PM | 2
2
1
0
0
0
0 | 1
1
T | 53
59
67
OTA
5
5
2
18
9
14
6
8 | 26
28
30
L E | 3
3
3
7
0
0
0
0
2
0
1 | 3
3
4
PERIC | 8
8
9
1
0
3
1
1
2
0
1 | 199
224
251
33
34
28
32
38
34 | 10
10
11
1
3
0
2
3 | 80
104
117 | 202
241
277
32
38
25
34
33
40 | 37
44
58
6
1
5
10
8
7 | 7
8
1
1
1 | | 4:00 PM — 4:00 PM — 4:15 PM — 4:30 PM — 4:45 PM — 5:00 PM — 5:00 PM — 5:15 PM — 5:45 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM
05:15 PM
05:30 PM
05:45 PM
06:00 PM | 2
2
1
0
0
0
0
1
0 | 1
1
0
0
1
0
0
0 | 53
59
67
OTA
5
5
2
18
9
14
6
8 | 26
28
30
L E
4
3
5
6
3
5
2
2 | 3
3
8 Y
0
0
0
0
2
0
1
0 | 3 3 4 PERIC | 8
8
9
DD
1
0
3
1
1
2
0
1 | 199
224
251
33
34
28
32
38
34
25
27 | 10
10
11
1
3
0
2
3
1
0 | 80
104
117
13
8
10
10
19
20
24
13 | 202
241
277
32
38
25
34
33
40
39
36 | 37
44
58
6
1
5
10
8
7
7
14 | 7
8
1
1
1
1 | | 6:15 PM — 6:30 PM — 6:45 PM — 4:00 PM — 4:15 PM — 4:30 PM — 4:45 PM — 5:00 PM — 5:15 PM — 5:45 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM
05:15 PM
05:30 PM
05:35 PM | 1
0
0
0
1 | 1
1
0
0
1
0
0
0 | 53
59
67
OTA
5
5
2
18
9
14
6
8 | 26
28
30
L E | 3
3
3
7
0
0
0
0
2
0
1 | 3
3
4
PERIC | 8
8
9
1
0
3
1
1
2
0
1 | 199
224
251
33
34
28
32
38
34
25 | 10
10
11
1
3
0
2
3 | 80
104
117
13
8
10
10
19
20
24 | 202
241
277
32
38
25
34
33
40
39 | 37
44
58
6
1
5
10
8
7 | 7
8
1
1
1
1
1 | | 5:15 PM — 5:30 PM — 5:45 PM — 4:00 PM — 4:30 PM — 4:45 PM — 5:15 PM — 5:30 PM — 5:45 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM
05:15 PM
05:30 PM
05:45 PM
06:00 PM | 2
2
1
0
0
0
0
1
0
0 | 1
1
0
0
1
0
0
0
0 | 53
59
67
OTA
5
5
2
18
9
14
6
8
HO | 26
28
30
L E
4
3
5
6
3
5
2
2
J R L Y | 3
3
3
8 Y
0
0
0
0
2
0
1
0
7 T | 3 3 4 PERIC | 8
8
9
D
1
0
3
1
1
2
0
1
S | 199
224
251
33
34
28
32
38
34
25
27 | 10
10
11
1
3
0
2
3
1
0
1 | 80
104
117
13
8
10
10
19
20
24
13 | 202
241
277
32
38
25
34
33
40
39
36 | 37
44
58
6
1
5
10
8
7
7
14 | 1
1
1
1
1
3
4 | | 5:15 PM — 5:30 PM — 5:45 PM — 4:00 PM — 4:45 PM — 4:45 PM — 5:30 PM — 5:30 PM — 4:00 PM — 4:00 PM — | 05:45 PM
06:00 PM
04:15 PM
04:30 PM
04:45 PM
05:00 PM
05:15 PM
05:30 PM
06:00 PM | 2
2
2 | 1
1
0
0
0
0
0
0
0 | 53
59
67
OTA
5
5
2
18
9
14
6
8
HO | 26
28
30
L E
4
3
5
6
3
5
2
2
J R L Y | 3
3
3
3
7
0
0
0
0
2
0
1
0
7
7 | 3 3 4 PERIC | 8
8
9
1
0
3
1
1
2
0
1
S | 199
224
251
33
34
28
32
38
34
25
27 | 10
10
11
1
3
0
2
3
1
0
1 | 80
104
117
13
8
10
10
19
20
24
13 | 202
241
277
32
38
25
34
33
40
39
36 | 37
44
58
6
1
5
10
8
7
7
14 | 1
1
1
1
1
1
3 | ## **ASSOCIATED TRANSPORTATION ENGINEERS** INTERSECTION TURNING MOVEMENT SUMMARY | N-S Approaci
E-W Approac | h: | CATHEDRAL
ALAMEDA
CATHEDR/ | AVENU | JE | PROJE | CT #: 10 | 0086 | COUNT DATE | E: | 11-11
07:00 A.M. | то | FILE NAME
09:00 A.M.
WEATHER: | • | 04AM
CLEAR | | |--|-----------------------|---|---|---|--|---|--|---|---|--|---|---|--|---|---| | PEAK HO | OUR: | 07:30 AM | то | 08:30 A | м | | | \ \ \ \ | 1 | | | LTR | | | | | | | | 0 | 0 | 0 |
7 | | ll
NORTH | 1 | : | : | APPRO | | | LTR | | | | | | <u> </u> | 1 0 | | _ | | l
I | LTR | · | LAN | IES | | | | | | | |
 | 1 | | | | 1 | | | | | | | | Г | 384 | ^ | < | V | -> | | | 7 | 1 | CONTROL TYP | E: | NONE | | | | | L | | | | TOTAL | - | *************************************** | 0 | |
 | ARRIVAL | . / DEI | PARTURE | VOLU | MES | | | L | 82 | | | 1,179 | | < | - 170 | j |
 | | | 0 | 568 | 1 | | | 33/, RTOR [| 40 |], | | | | , | 196 | | İ | | | | /\
· | • | | | CATTLURAL | UARS R | | 1 |
I | > - > | V | | | ŀ | 234 | <- | \ / | ŀ | <- | 366 | | | | | | 1 | | | | | 1 | 506 | -> | | | -> | 141 | | | | | 64 | 184 | 59 |] | | | 1 | | | 1 | /]\ | | | | | | ALAMEDA AV | ENUE | | 24% | RTOR | | | 1 | | | 236 | 307 | | | | | 15 DED | 100 | | NODE (POLICE) | | T T | | | | | *********** | 1 | | | | | From | 1E PER | To | LEFT | NORTHBOUN
RIGHT | RTOR | Left | SOUTHBO
Thru | | THRU | EASTBOUND
RIGHT | RTOR | Left | STBOUND
Thru | Right | TOTA
VOLUM | | | | | | | | CO | UNT | DAT | A | | | | | | | | 07:00 AM | | 07:15 AM | 3 | 2 | 13 | 0 | | | | | | | | | | | 07:15 AM | | | _ | | | | 0 | 0 | 33 | 5 | 0 | 14 | 10 | 0 | 8 | | | | 07:30 AM | 5 | 5 | 29 | 0 | 0 | 0 | 82 | 13 | 2 | 40 | 30 | 0 | 20 | | | _ | 07:45 AM | 21 | 5
50 | 29
50 | 0 | 0
0 | 0 | 82
1 <i>7</i> 2 | 13
36 | 2
1 <i>7</i> | 40
111 | 30
49 | 0
0 | 20
50 | | 7:45 AM | | 07:45 AM
08:00 AM | 21
52 | 5
50
135 | 29
50
55 | 0
0
0 | 0
0
0 | 0
0
0 | 82
1 <i>7</i> 2
254 | 13
36
77 | 2
17
35 | 40
111
198 | 30
49
90 | 0
0
0 | 20
50
89 | | 07:45 AM
08:00 AM | | 07:45 AM
08:00 AM
08:15 AM | 21
52
65 | 5
50
135
183 | 29
50
55
82 | 0
0
0
0 | 0
0
0 | 0
0
0
0 | 82
1 <i>7</i> 2
254
358 | 13
36
77
93 | 2
17
35
38 | 40
111
198
224 | 30
49
90
132 | 0
0
0
0 | 20
50
89
117 | | 07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM | | 07:45 AM
08:00 AM
08:15 AM
08:30 AM | 21
52
65
69 | 5
50
135
183
189 | 29
50
55
82
88 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 82
172
254
358
466 | 13
36
<i>77</i>
93
95 | 2
17
35
38
42 | 40
111
198
224
236 | 30
49
90
132
200 | 0
0
0
0 | 20
50
89
117
138 | | 07:45 AM
08:00 AM | | 07:45 AM
08:00 AM
08:15 AM | 21
52
65 | 5
50
135
183 | 29
50
55
82 | 0
0
0
0 | 0
0
0 | 0
0
0
0
0 | 82
1 <i>7</i> 2
254
358 | 13
36
77
93 | 2
17
35
38 | 40
111
198
224 | 30
49
90
132 | 0
0
0
0 | 20
50
89
117 | | 97:45 AM
98:00 AM
98:15 AM
98:30 AM | -
-
-
-
- | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | 21
52
65
69
70 | 5
50
135
183
189
190 | 29
50
55
82
88
96 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0 | 82
172
254
358
466
539
592 | 13
36
<i>77</i>
93
95
98 | 2
17
35
38
42
42 | 40
111
198
224
236
245 | 30
49
90
132
200
248 | 0
0
0
0
0 | 20
50
89
112
138
152 | | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | 21
52
65
69
70 | 5
50
135
183
189
190 | 29
50
55
82
88
96
101 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 82
172
254
358
466
539
592 | 13
36
<i>77</i>
93
95
98 | 2
17
35
38
42
42 | 40
111
198
224
236
245 | 30
49
90
132
200
248 | 0
0
0
0
0 | 26
56
89
111
134
152
164 | | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:30 AM
07:00 AM
07:15 AM |

 | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
09:00 AM | 21
52
65
69
70
72 | 5
50
135
183
189
190
193 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0 | 0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 82
172
254
358
466
539
592 | 13
36
77
93
95
98
106 | 2
17
35
38
42
42
44 | 40
111
198
224
236
245
259 | 30
49
90
132
200
248
282 | 0
0
0
0
0
0 | 26
86
111
133
153
164 | | 7:45 AM
8:00 AM
8:15 AM
8:30 AM
8:45 AM
07:00 AM
07:15 AM |

 | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
09:00 AM
07:15 AM
07:30 AM
07:45 AM | 21
52
65
69
70
72 | 5
50
135
183
189
190
193 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
B Y | 0
0
0
0
0
0
0
0 | 82
172
254
358
466
539
592
D | 13
36
77
93
95
98
106 | 2
17
35
38
42
42
44 | 40
111
198
224
236
245
259 | 30
49
90
132
200
248
282 | 0
0
0
0
0
0 | 2
5
8
11
13
15
16 | | 7:45 AM
8:00 AM
8:15 AM
8:30 AM
8:45 AM
07:00 AM
07:15 AM
07:30 AM |

 | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
09:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM | 21
52
65
69
70
72
3
2
16
31 | 5
50
135
183
189
190
193 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
B Y | 0
0
0
0
0
0
PERIO | 82
172
254
358
466
539
592
D 33 49 90 82 | 13
36
77
93
95
98
106 | 2
17
35
38
42
42
44
0
2 | 40
111
198
224
236
245
259 | 30
49
90
132
200
248
282 | 0
0
0
0
0
0 | 2
5
8
11
13
15
16
11
3
3 | | 7:45 AM
8:00 AM
8:15 AM
8:30 AM
8:45 AM
07:00 AM
07:15 AM
07:30 AM
07:45 AM |

 | 07:45 AM
08:00 AM
08:15 AM
08:45 AM
09:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM | 21
52
65
69
70
72
3
2
16
31
13 | 5
50
135
183
189
190
193 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
PERIO | 82
172
254
358
466
539
592
D 33 49 90 82 104 | 13
36
77
93
95
98
106 | 2
17
35
38
42
42
44
0
2
15 | 40
111
198
224
236
245
259 | 30
49
90
132
200
248
282 | 0
0
0
0
0
0
0 | 2
56
8
11
13
15
16
1
3
3
3
2 | | 7:45 AM
8:00 AM
8:15 AM
8:30 AM
8:45 AM
07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM |

 | 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM | 21
52
65
69
70
72
16
31
13
4 | 5
50
135
183
189
190
193
2
3
45
85
48
6 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0 | 82
172
254
358
466
539
592
D 33
49 90 82 104 108 | 13
36
77
93
95
98
106 | 2
17
35
38
42
42
44
0
2
15
18 | 40
111
198
224
236
245
259 | 30
49
90
132
200
248
282 | 0
0
0
0
0
0
0 | 2
5
8
11
13
15
16
11
30
32
2 | | 7:45 AM
8:00 AM
8:15 AM
8:30 AM
8:45 AM
07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM |

 | 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM | 21
52
65
69
70
72
16
31
13
4 | 5
50
135
183
189
190
193
2
3
45
85
48
6 | 29
50
55
82
88
96
101
FOTA
13
16
21
5
27
6
8 | 0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
PERIO | 82
172
254
358
466
539
592
D 33 49 90 82 104 108 73 | 13
36
77
93
95
98
106 | 2
17
35
38
42
42
44
0
2
15
18
3
4
0 | 40
111
198
224
236
245
259
14
26
71
87
26
12
9 | 30
49
90
132
200
248
282
10
20
19
41
42
68
48 | 0
0
0
0
0
0
0 | 2
5
8
11
13
15
16
1
3
3
2
2 | | 7:45 AM
8:00 AM
8:15 AM
8:30 AM
8:45 AM
07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM |

 | 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM | 21
52
65
69
70
72
16
31
13
4 | 5
50
135
183
189
190
193
2
3
45
85
48
6 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0 | 82
172
254
358
466
539
592
D 33 49 90 82 104 108 73 53 |
13
36
77
93
95
98
106 | 2
17
35
38
42
42
44
0
2
15
18
3
4 | 40
111
198
224
236
245
259
14
26
71
87
26
12 | 30
49
90
132
200
248
282
10
20
19
41
42
68 | 0
0
0
0
0
0
0 | 2
5
8
11
13
15
16 | | 7:45 AM
8:00 AM
8:15 AM
8:30 AM
8:45 AM
07:00 AM
07:15 AM
07:30 AM
08:45 AM
08:15 AM
08:15 AM | | 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM | 21
52
65
69
70
72
16
31
13
4 | 5
50
135
183
189
190
193
2
3
45
85
48
6
1 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0 | 82
172
254
358
466
539
592
D 33
49 90 82 104 108 73 53 | 13
36
77
93
95
98
106 | 2
17
35
38
42
42
44
0
2
15
18
3
4
0
2 | 40
111
198
224
236
245
259
14
26
71
87
26
12
9
14 | 30
49
90
132
200
248
282
10
20
19
41
42
68
48
34 | 0
0
0
0
0
0
0 | 2
5
8
11
13
15
16 | | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
07:00 AM
07:15 AM
07:30 AM
08:15 AM
08:15 AM
08:30 AM
08:45 AM | | 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:45 AM 08:00 AM 08:45 AM | 21
52
65
69
70
72
16
31
13
4
1
2 | 5
50
135
183
189
190
193
2
3
45
85
48
6
1
3 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 82
172
254
358
466
539
592
D 33
49 90 82 104 108 73 53 | 13
36
77
93
95
98
106
5
8
23
41
16
2
3
8 | 2
17
35
38
42
42
44
0
2
15
18
3
4
0
2 | 40
111
198
224
236
245
259
14
26
71
87
26
12
9
14 | 30
49
90
132
200
248
282
10
20
19
41
42
68
48
34 | 0
0
0
0
0
0
0
0 | 26
88
111
133
155
164
113
36
39
22
24
14
113 | | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
07:00 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:45 AM | | 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:30 AM 08:45 AM 09:00 AM | 21
52
65
69
70
72
16
31
13
4
1
2 | 5
50
135
183
189
190
193
2
3
45
85
48
6
1
3 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
T | 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 82
172
254
358
466
539
592
D 33
49 90 82 104 108 73 53 | 13
36
77
93
95
98
106
5
8
23
41
16
2
3
8 | 2
17
35
38
42
42
44
0
2
15
18
3
4
0
2 | 40
111
198
224
236
245
259
14
26
71
87
26
12
9
14 | 30
49
90
132
200
248
282
10
20
19
41
42
68
48
34 | 0
0
0
0
0
0
0
0
0 | 26
89
111
138
152
164
12
30
39
22
14
12
89
109 | | 07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM
07:00 AM
07:15 AM
07:30 AM
07:45 AM
08:00 AM
08:15 AM
08:30 AM
08:45 AM | | 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:45 AM 08:00 AM 08:45 AM | 21
52
65
69
70
72
16
31
13
4
1
2 | 5
50
135
183
189
190
193
2
3
45
85
48
6
1
3 | 29
50
55
82
88
96
101
FOT A | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 82
172
254
358
466
539
592
D 33
49 90 82 104 108 73 53 | 13
36
77
93
95
98
106
5
8
23
41
16
2
3
8 | 2
17
35
38
42
42
44
0
2
15
18
3
4
0
2 | 40
111
198
224
236
245
259
14
26
71
87
26
12
9
14 | 30
49
90
132
200
248
282
10
20
19
41
42
68
48
34 | 0
0
0
0
0
0
0
0 | 26
88
111
133
155
164
113
36
39
22
24
14
113 | # ASSOCIATED TRANSPORTATION ENGINEERS INTERSECTION TURNING MOVEMENT SUMMARY | PROJECT: 74
N-S Approach: | | ATHEDRAL
ALAMEDA | | • | PROJEC | CT #: 10 | 086 | COUNT DA | | 11-11
04:00 PM | то | FILE NAME:
6:00 | | 04PM | | |---------------------------------------|---------------|----------------------|----------|-----------|----------|----------|--------|------------|-----------------------------------|-------------------|------------|--------------------|------------|--------|--------| | -W Approach: | | CATHEDRA | L OAL | KS ROAD | | | | CITY: GOLE | TA | | | WEATHER: | | OVERC | CAST | | · · · · · · · · · · · · · · · · · · · | | | | | | | | ٨ | 1 | | | | | | | | PEAK HOU | R: | 04:30 PM | 10 | 05:30 P/ | и | | | 417 | ı | | | | | | . 2000 | | | | | | | | | | 11 | ı | i | | | | | 7 | | | | | | Т | Т. | 7 | | NORTH | 1 | | | APPRO | | | | | | | | 0 | 0 | 0 | J | | | - 1 | Į | | LANI | :5 | | J | | | | | | | | | | | 1 | | | | [| | | | | | | | | | | | | ŀ | | | | | | | | | | | | | | | | 1 | 1 | CONTROL TYP | E : | SIGNAL | | | | | 1. | 75 | > | | TOTAL | | | 0 | J |
 | ARRIVAL | . / DEI | PARTURE | VOLUA | MES | | | | 0 | , | | 648 |] | < | 283 |] | 1 | | | | | | | | <u> </u> | | V | | | | | ļ | 7 | 1 | | | 0 | 195 | | | |
ATHEDRAL OA | 0 | , | | | | , | 86 |] | ! | | | | / \ | | | | MIHEDKAL OA | AS K | V | <-
I | | ·> | V | | | 1 | 309 | < | \ / | ł | < | 369 | | | - | | İ | i | i | | | | | | • | | | • | | | | Ī | | | | | - | | | F | 185 | > | | | -> | 58 | | | | i | 26 | 20 | 48 |] | | | 1 | | | 1 | / \ | | | | | | ALAMEDA AVI | ENUE | | 717, | RTOR. | | | 1 | | | \]/ | | | | | | | | | | | | | | 1 | | | 86 | 94 | | | | TIME | PERIO | on 1 | | NORTHBOUN | D | T | | | | EASTBOUND | | Wes | TBOUND | | ТОТ | | From - | - | To | LEFT | RIGHT | RTOR | | | | THRU | RIGHT | RTOR | LEFT | THRU | | VOLU | | | | | | | | СО | UNT | DAT | · A | | | | | | | | 4:00 PM - | _ | 04:15 PM | 8 | 5 | 11 | | | | 52 | 5 | 0 | 18 | 46 | | 1 | | 04:15 PM - | - | 04:30 PM | 10 | 8 | 21 | | | | 100 | 5 | 0 | 36 | 96 | | 2 | | 4:30 PM - | - | 04:45 PM | 13 | 10 | 33 | | | | 151 | 9 | 0 | 60 | 160 | | 4 | | 4:45 PM - | - | 05:00 PM | 19 | 21 | 48 | | | | 192 | 11 | 0 | 89 | 217 | | 5 | | 5:00 PM - | | 05:15 PM | 28 | 27 | 61 | | | | 225 | 13 | 0 | 108 | 283 | | 7 | | 5:15 PM -
5:30 PM - | | 05:30 PM
05:45 PM | 36
39 | 28
32 | 69
72 | | | | 275316 | 15
16 | 0
0 | 122
137 | 379
467 | | 10 | | 5:30 PM -
5:45 PM - | | 06:00 PM | 41 | 32 | 76 | | | | 357 | 21 | 0 | 151 | 528 | | 12 | | | | | | | OTA | A L | ВΥ | PERIC | | | | | | | | | 04:00 PM - | | 04:15 PM | 8 | 5 | 11 | 0 | 0 | 0 | 52 | 5 | 0 | 18 | 46 | 0 | 1 | | 04:15 PM — | - | 04:30 PM | 2 | 3 | 10 | 0 | 0 | 0 | 48 | 0 | 0 | 18 | 50 | 0 | 1 | | 14:30 PM — | - | 04:45 PM | 3 | 2 | 12 | 0 | 0 | 0 | 51 | 4 | 0 | 24 | 64 | 0 | 1 | | 04:45 PM — | - | 05:00 PM | 6 | 11 | 15 | 0 | 0 | 0 | 41 | 2 | 0 | 29 | 57 | 0 | 1 | |)5:00 PM | - | 05:15 PM | 9 | 6 | 13 | 0 | 0 | 0 | 33 | 2 | 0 | 19 | 66 | 0 | 1 | | 5:15 PM | - | 05:30 PM | 8 | 1 | 8 | 0 | 0 | 0 | 50 | 2 | 0 | 14 | 96 | 0 | 1 | | 5:30 PM | - | 05:45 PM | 3 | 4 | 3 | 0 | 0 | 0 | 41 | 1 | 0 | 15 | 88 | 0 | 1 | | | | 06:00 PM | 2 | 0 | 4 | 0 | 0 | 0 | 41 | 5 | 0 | 14 | 61 | 0 | 1 | | | | | | | но | URL | Y T | OTAL | S | 1 - | | 5:45 PM — | | 05:00 PM | 19 | 21 | 48 | 0 | 0 | 0 | 192 | 11 | 0 | 89 | 217 | 0 | 1 | | 4:00 PM — | | 05:15 PM | 19
20 | 22 | 48
50 | 0
0 | 0
0 | 0 | 192
173 | 11
8 | 0 | 89
90 | 217
237 | 0
0 | 6 | | 14:00 PM — 14:15 PM — 14:30 PM — | -
- | 05:15 PM
05:30 PM | 20
26 | 22
20 | 50
48 | 0
0 | 0
0 | 0 | 173
175 | 8
10 | 0
0 | 90
86 | 237
283 | 0
0 | 6 | | 05:45 PM — 04:00 PM — 04:15 PM — | -
- | 05:15 PM | 20 | 22 | 50 | 0 | 0 | 0 | 173 | 8 | 0 | 90 | 237 | 0 | 6 | **National Data & Surveying Services** #### TMC Summary of Glen Annie Rd/Cathedral Oaks Rd Project #: 09-8098-001 #### **National Data & Surveying Services** #### TMC Summary of Glen Annie Rd (Right Turns on Red)/Catherdral Oaks Rd **National Data & Surveying Services** #### TMC Summary of Storke Rd/101 NB Project #: 09-8107-001 #### National Data & Surveying Services #### TMC Summary of Storke Rd/101 NB National Data & Surveying Services #### TMC Summary of Storke Rd/101 SB Project #: 09-8107-002 CONTROL: Signalized AM PEAK HOUR 730 AM NOON PEAK HOUR 0 AM PM PEAK HOUR 500 PM National Data & Surveying Services #### TMC Summary of Storke
Rd/Hollister Ave Project #: 09-8107-005 CONTROL: Signalized AM PEAK HOUR 730 AM NOON PEAK HOUR 0 AM PM PEAK HOUR 500 PM **National Data & Surveying Services** #### TMC Summary of Storke Rd/Hollister Ave Prepared by NDS/ATD | ocation: S | Stor | | | y, Novembe | er 04, 2009 | City: | Gole | ta | NB | | SB | a : | 3 | WB | Total | |--------------------|------------|---------------------------|------------|--|-------------|-----------------|----------------|------------|---------------|------------|----------------|------------|----|----------|---------------| | AM Period
00:00 | | ke N | l/n H | allistor | | | | | | | | | | | | | AM Period
00:00 | | | ., | omster | | Project: | 09-8108 | 3-001 | 16,704 | | 17,055 | 0 | | 0 | 33,759 | | 00:00 | NB | | SB | EB | WB | | PM Period | NB | | SB | | EB | WB | | | | 00.45 | 44 | | 24 | | | | 12:00 | 340 | | 295 | | | | | | | | 28 | | 19 | | | | 12:15 | 278 | | 314 | | | | | | | | 17 | | 17 | | | | 12:30 | 281 | | 332 | 1051 | | | | 2462 | | | 15 | 104 | 9 | 69 | | 173 | 12:45 | 309 | 1208 | 313 | 1254 | | | | 2462 | | | 19 | | 13 | | | | 13:00 | 274 | | 265
288 | | | | | | | | 12
14 | | 6
11 | | | | 13:15
13:30 | 297
298 | | 240 | | | | | | | 01:30 | 4 | 49 | 11 | 41 | | 90 | 13:45 | 301 | 1170 | 252 | 1045 | | | | 2215 | | 02:00 | 9 | | 12 | | | | 14:00 | 295 | | 279 | | | | | | | 02:15 | 9 | | 6 | | | | 14:15 | 283 | | 276 | | | | | | | 02:30 | 11 | | 19 | | | | 14:30 | 334 | | 310 | | | | | | | 02:45 | 7 | 36 | 6 | 43 | | 79 | 14:45 | 325 | 1237 | 304 | 1169 | · | | | 2406 | | 03:00 | 5 | | 5 | | | | 15:00 | 340 | | 314 | | | | | | | 03:15 | 6 | | 10 | | | | 15:15 | 326 | | 402 | | | | | | | 03:30 | 7 | | 17 | | r | | 15:30 | 371 | 1004 | 369 | 4.460 | | | | 2706 | | 03:45 | 9 | 27 | 34 | 66 | | 93 | 15:45 | 297 | 1334 | 377 | 1462 | | | | 2796 | | | 10 | | 17 | | | | 16:00 | 369 | | 357 | | | | | | | | 12 | | 9 | | | | 16:15
16:30 | 364
382 | | 330
329 | | | | | | | | 16
16 | 54 | 21
42 | 89 | | 143 | 16:45 | 370 | 1485 | 330 | 1346 | | | | 2831 | | | 36 | J-1 | 15 | | | 113 | 17:00 | 433 | 1103 | 324 | 2010 | | | | | | | 28 | | 32 | | | | 17:15 | 444 | | 346 | | | | | | | | 33 | | 53 | | | | 17:30 | 395 | | 354 | | | | | | | | 57 | 154 | 64 | 164 | | 318 | 17:45 | 365 | 1637 | 333 | 1357 | | | | 2994 | | 06:00 | 49 | | 111 | | | | 18:00 | 338 | | 319 | | | | | | | 06:15 | 81 | | 133 | | | | 18:15 | 270 | | 242 | | | | | | | 06:30 | 146 | | 158 | | | | 18:30 | 273 | | 221 | | | | | | | 06:45 | 163 | 439 | 171 | 573 | | 1012 | 18:45 | 243 | 1124 | 219 | 1001 | | | | 2125 | | | 138 | | 216 | | | | 19:00 | 225 | | 188 | | | | | | | | 223 | | 244 | | | | 19:15 | 167 | | 205 | | | | | | | | 256 | 004 | 267 | 1040 | | 1043 | 19:30 | 213 | 763 | 129
179 | 701 | | | | 1464 | | | 277 | 894 | 321 | 1048 | | 1942 | 19:45 | 158 | 703 | | 701 | | | | 1707 | | | 234
233 | | 307
294 | | | | 20:00
20:15 | 149
142 | | 145
142 | | | | | | | | 233
273 | | 279 | | | | 20:30 | 140 | | 125 | | | | | | | | | 1031 | | 1195 | | 2226 | 20:45 | 118 | 549 | 130 | 542 | | | | 1091 | | | 199 | | 251 | | | | 21:00 | 117 | | 129 | | | | | | | | 180 | | 220 | | | | 21:15 | 108 | | 119 | | | | | | | 09:30 | 194 | | 226 | | | | 21:30 | 112 | | 97 | | | | | | | 09:45 | 173 | 746 | 233 | 930 | | 1676 | 21:45 | 91 | 428 | 118 | 463 | | | | 891 | | 10:00 | 173 | | 243 | | | | 22:00 | 71 | | 79 | | | | | | | | 181 | | 237 | | | | 22:15 | 62 | | 70 | | | | | | | | 223 | | 249 | 1001 | | 1001 | 22:30 | 61 | 220 | 65 | 257 | | | | 407 | | | 223 | 800 | 275 | 1004 | | 1804 | 22:45 | 36 | 230 | 43 | 257 | ** *** | | <u> </u> | 487 | | | 247 | | 272 | | | | 23:00 | 53 | | 46
42 | | | | | | | | 227
283 | | 257
263 | | | | 23:15
23:30 | 45
39 | | 42
35 | | | | | | | | | 1034 | | 1076 | | 2110 | 23:45 | 34 | 171 | 37 | 160 | | | | 331 | | | | | - | | | | | | 11336 | | 10757 | | | | 22093 | | Total Yol. | | 5366 | | 6298 | | 11666 | | | NB | | SB | | 2 | WB | Total | | | | | | | | | Daily To | riste · | 16,704 | | 17,055 | 0 | | 0 | 33,75 | | | | | | | | | | | | | | | | | | | Salit 94 | | 46,5% | | | | | | | | | 48 <i>J</i> Ho | | | | .65.40 | | | | | | | | | - 44 | | | | | | | | | | Peak Hr | | 1130 | | 11:45 | | | Peak Hr. | | 16:45 | | 15:15 | | | | 16:45
2996 | | Volume : | | | | 1495)
1930: | | 2401.
203945 | | | 1642
6375 | | 1505
11575 | | | | (| | | | | | 2243 | | | | | 71.22 | | 2701 | | | | | | 75:100)
75:100) | | | | Children of the Control Contr | | | | ., | | ******* | | | | | | | | | . 132.7
108.00
1021 | | 11.75
1201 | | | | | 16:45
1642 | | | | | | | Site: Date: 10086 1/12/2011 Wednesday #### 24 Hour Volume (2 Channel/pg., 60 Min.) | Interval | | | | |---------------------|-------------------|-------------------|--------------| | Begin | SOUTH | NORTH | Combined | | L2:00 AM | 11 | 24 | 35 | | 1:00 AM | 6 | 17 | 23 | | 2:00 AM | 3 | 16 | 19 | | 3100 AM | 3 | 4 | 27 | | 4:00 AM | 10 | 9 | 19 | | 5:00 AM | 44 | 36 | 80 | | 6:00 AM | 110 | 135 | 245 | | 7:00 AM | 359 | 625 | 984 | | 8:00 AM | 302 | 403 | 705 | | 9:00 AM
l0:00 AM | 2072
182 | 200
206 | 407
388 | | 10:00 AM | 238 | 206
250 | 488
488 | | 12:00 PM | <u>230</u>
287 | <u>250</u>
364 | 651 | | 1.00 PM | 2448 | 268 | 512 | | 2:00 PM | 285 | 462 | 747 | | 3,00 PM | 452 | 528 | 990 | | 4:00 PM | 277 | 415 | 692 | | 5:00 PM | 7.(9,9) | 5314 | - 813 | | 6:00 PM | 157 | 345 | 502 | | 7:00 PM | 1087 | 198 | 3,0/6 | | 8:00 PM | 80 | 142 | 222 | | 9) 00 PM | 77. | 159 | 236 | | 0:00 PM | | 73 | 103 | | 1:00 PM | 24.5 | 42 | 66 | | otals | 3795 | 5445 | 9240 | | | 41.1 % | 58.9 % | | | | | | | | eak Hours | 7.00.444 | 7 00 111 | 7.00 | | .M | 7:00 AM | 7:00 AM | 7:00 AM | | olume | 359 | 625 | 984 | | M | 3:00 PM | 3:00 PM | 3:00 PM | | olume | 452 | 5 38 | 990 | Site: Date: 10086 1/12/2011 Wednesday ### 24 Hour Volume (2 Channel/pg., 60 Min.) | Interval | WESTBOU | EASTBOU | | |------------------------|--------------|--|-----------------| | Begin | ND | ND | Combined | | 12:00 AM | 21 | 11 | 32 | | 1:00 AM | 16 | 14 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 23 | | 2:00 AM | | 1 | 12 | | 3:00 AM | 3 | | 4 | | 4:00 AM | | 8 | 11 | | 5:00 AM | 23 | 56 | 7/9 | | 6:00 AM | 119 | 143 | 262 | | 7:00 AM | 598 | 669 | 1267 | | 8:00 AM | 257 | 493 | 750 | | 9100 AM | <u>143</u> 2 | 2/3(0) | 37S | | 10:00 AM | 134 | 202 | 336 | | iii 400 AM | 174 | 1/9(6) | 370 | | 12:00 PM | 338 | 323 | 661 | | 1500 PM | 2167 | 264 | 480 | | 2:00 PM | 456 | 367 | 823 | | 3:00 PM | 450 | 677 | 1127 | | 4:00 PM | 344 | 309 | 653 | | 5:00 PM | 445 | 329 | 7/7/4 | | 6:00 PM | 297 | 163 | 460 | | 7:00 PM
8:00 PM | 185 | 129 | 314 | | 9.00 PM | 150 | 94 | 244 | | 10:00 PM | 1486 | 9 <u>3</u> | 241 | | 11E00 PM | 61
- 38 | 33
23 | 94
51 | | otals | 4630 | 4821 | 9451 | | | 49.0 % | 51.0 % | 3.01 | | Nagla III aasaa | | | | | <u>Peak Hours</u>
M | 7:00 44 | 7.00.444 | 7 00 414 | | | 7:00 AM | 7:00 AM | 7:00 AM | | 'olume | 598 | 669 | 1267 | | M | 2:00 PM | 3:00 PM | 3:00 PM | | 'olume | 456 | 677 | 1127 | #### INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS Reference 1 Winchester Canyon Road/Cathedral Oaks Road Reference 2 U.S. 101 NB Ramps- Calle Real/Winchester Canyon Road Reference 3 Cathedral Oaks Road/Northgate Drive-Evergreen Drive Reference 4 Cathedral Oaks Road/Alameda Avenue Reference 5 Glen Annie Road/Cathedral Oaks Road Reference 6 U.S. 101 NB Ramps/Glen Annie Road Reference 7 U.S. 101 SB Ramps/Storke Road Reference 8 Hollister Avenue/Storke Road Reference A Cathedral Oaks Road/Calle Real Reference B U.S. 101 SB Ramps/Cathedral Oaks Road Reference C Cathedral Oaks Road/Hollister Avenue | | | ALL-WA | Y STOP C | ONTROL A | NALYSIS | | | |
--|---------------|--|---------------|------------------|--------------|---------------------------------------|--------------|--------| | General Information | | | | Sielnome | | | | | | Analyst | MMF | | | Intersection | | 01_EX | | | | Agency/Co. | ATE | | | Jurisdiction | | GOLE | | | | Date Performed | 1/13/20 | | | Analysis Year | | EXIST | ING ' | | | Analysis Time Period | A.M. P. | EAK HOUR | | | | | | | | Project ID #10086 - 7400 CATH | | DJECT | | 1 | | | | | | East/West Street: CATHEDRA | ··· | MINISTRAL PROPERTY OF THE PROP | | North/South Stre | et: WINCHEST | ER CANYON RO | AD | | | Volume Adjustments a | nd Site Chara | | | | | | | | | Approach
Movement | L | | astbound
T | R | E | We | stbound
T | R | | Volume (veh/h) | 15 | | 97 | 10 | 10 | | 136 | 11 | | %Thrus Left Lane | | | 3, | 70 | 10 | | 730 | | | Approach | | J | orthbound | | | Sou | ithbound | | | Movement | L | <u></u> | T I | R | L | 1 | T I | R | | Volume (veh/h) | 33 | } | 19 | 54 | 23 | | 27 | 58 | | %Thrus Left Lane | | | | | | | | | | | East | bound | We | stbound | North | bound | Sout | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | TR | L | TR | LT | R | LTR | | | PHF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow Rate (veh/h) | 15 | 107 | 10 | 147 | 52 | 54 | 108 | | | % Heavy Vehicles | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | No. Lanes | 2 | 2 | | 2 | - 2 | 2 | | 1 | | Geometry Group | 5 | 5 | | 5 | ŧ | 5 | 4 | lb | | Duration, T | | | | 0.2 | 25 | | | | | Saturation Readway Ad | justment Wo | rksheet | | | | | | | | Prop. Left-Turns | 1.0 | 0.0 | 1.0 | 0.0 | 0.6 | 0.0 | 0.2 | | | Prop. Right-Turns | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 1.0 | 0.5 | | | Prop. Heavy Vehicle | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | nLT-adj | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | | hRT-adj | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.6 | -0.6 | | hHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | nadj, computed | 0.6 | 0.0 | 0.6 | 0.0 | 0.4 | -0.6 | -0.2 | | | Departure Headway and | | | 7.576.55.5 | | | <u>'</u> | | 1 | | hd, initial value (s) | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | | | (, initial | 0.01 | 0.10 | 0.01 | 0.13 | 0.05 | 0.05 | 0.10 | | | nd, final value (s) | 5.80 | 5.23 | 5.76 | 5.21 | 5.72 | 4.70 | 5.14 | | | x, final value | 0.02 | 0.16 | 0.02 | 0.21 | 0.08 | 0.07 | 0.15 | | | Move-up time, m (s) | 2. | | | 2.3 | 2. | ' | | .3 | | Service Time, t _s (s) | 3.5 | 2.9 | 3.5 | 2.9 | 3.4 | 2.4 | 2.8 | | | Capacity and Level of S | | | 1 | | | | 1 | 1 | | The second secon | Eastb | ound | Wes | stbound | North | bound | Sout | nbound | | 1 | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Capacity (veh/h) | 265 | 357 | 260 | 397 | 302 | 304 | 358 | | | Delay (s/veh) | 8.64 | 8.89 | 8.56 | 9.31 | 8.94 | 7.76 | 8.77 | | | Los | A | Α | Α | A | A | Α | Α | | | Approach: Delay (s/veh) | | .86 | 1 | .26 | 8.3 | | | 77 | | LOS | | A | | A | A. A. | | <u> </u> | 4 | | Intersection Delay (s/veh) | | | <u> </u> | 8.8 | | · · · · · · · · · · · · · · · · · · · | | • | | Intersection LOS | | | | | | | | | | NOISCOUOTI LOS | L | · · · · · · · · · · · · · · · · · · · | | A | | | | | opyright © 2008 University of Florida, All Rights Reserved HCS+TM Version 5.4 Generated: 1/13/2011 1:21 PM #### **ALL-WAY STOP CONTROL ANALYSIS** General Information Steinformation 01 EX+PR AM Intersection **Analyst GOLETA** Jurisdiction Agency/Co. ATE EXISTING+PROJECT Analysis Year **Date Performed** 1/13/2011 A.M. PEAK HOUR Analysis Time Period Project ID #10086 - 7400 CATHEDRAL OAKS PROJECT North/South Street: WINCHESTER CANYON ROAD East/West Street: CATHEDRAL OAKS ROAD Volume Adjustments and Site Characteristics Approach Eastbound Westbound R R Т т Movement 11 10 139 Volume (veh/h) 15 97 10 %Thrus Left Lane Southbound Northbound \pproach L T R R Movement 23 27 58 33 19 55 [|]//olume (veh/h) %Thrus Left Lane Eastbound Westbound Northbound Southbound L2 L1 L2 L2 L2 L1 L1 L1 R LTR L TR L TR LT Configuration 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHF 108 10 150 52 55 15 107 low Rate (veh/h) 4 4 6 Heavy Vehicles 4 4 4 4 2 2 2 No. Lanes 4b 5 5 5 Geometry Group Juration, T 0.25 Saturation Headway Adjustment Worksneet 0.0 0.2 1.0 Prop. Left-Turns 0.0 1.0 0.0 0.6 0.5 1.0 0.0 0.1 0.0 0.1 0.0 'rop. Right-Turns 0.0 Prop. Heavy Vehicle 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.2 0.5 0.5 0.5 0.5 0.5 LT-adj -0.7 -0.7 -0.7 -0.6 -0.6 -0.7 -0.7 -0.7 RT-adi 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 hHV-adi -0.2 0.6 0.0 0.6 0.0 0.4 -0.6adj, computed Departure Headway and Service Time 3.20 3.20 3.20 3.20 3.20 3.20 3.20 hd, initial value (s) 0.05 0.10 initial 0.01 0.10 0.01 0.130.05 5.80 5.24 5.77 5.21 5.73 4.71 5.15 d, final value (s) 0.07 0.15 0.02 0.16 0.02 0.22 0.08 x, final value 2.3 2.3 2.3 2.3 love-up time, m (s) 2.4 2.8 2.9 3.5 2.9 3.4 ervice Time, t_s (s) 3.5 Capacity and Level of Service Northbound Southbound Westbound Eastbound L1 L2 L1 L2 L1 L2 L1 L2 358 265 357 400 302 305 Capacity (veh/h) 260 8.65 8.90 8.56 9.35 8.95 7.78 8.79 elay (s/veh) Α Α LOS Α Α Α A Α 8.79 8.35 9.30 ^pproach: Delay (s/veh) 8.87 Α A LOS Α Α 8.88 Intersection Delay (s/veh) itersection LOS opyright © 2008 University of Florida, All Rights Reserved HCS+TM Version 5.4 Generated: 1/14/2011 10:33 AM | | | ALL-WA | Y STOP C | ONTROL | ANALYS | IS | | |
--|--------------------------------|-------------------|---|-------------------------------------|---------------|-------------|------------------------|----------------| | General Information | | | | Site Inform | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | MMF
ATE
2/23/2
A.M. F | 2011
PEAK HOUR | 4 (damp) (1994) (1995) (1994) (1994) (1994) | Intersection 01_
Jurisdiction GO | | | K_AM
ETA
ULATIVE | | | Project ID #10086 - 7400 CAT | | | | | | | | | | East/West Street: CATHEDF | | | | North/South S | treet: WINCHE | ESTER CANYO | N ROAD | | | Volume Adjustments | and Site C | haracterist | ics | | | | | | | Approach | | E | astbound | | | We | stbound | | | Movement Volume (veh/h) | 10 | <u> </u> | 118 | R
11 | 10 | | T
144 | <u>R</u>
11 | | %Thrus Left Lane | | · | 110 | | 10 | | 144 | 11 | | Approach | | | orthbound | | | <u> </u> | thbound | | | Movement | L | | T | R | L | 300 | T | R | | Volume (veh/h) | 30 | 6 | 19 | 59 | 25 | | 27 | 62 | | %Thrus Left Lane | | | | | | | | | | The second secon | East | bound | Wes | stbound | Nort | hbound | Sout | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | TR | L | TR | LT | R | LTR | <u> </u> | | PHF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow Rate (veh/h) | 16 | 129 | 10 | 155 | 55 | 59 | 114 | | | % Heavy Vehicles | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | No. Lanes | | 2 | | 2 | | 2 | | i | | Geometry Group | | 5 | | 5 | | 5 | 4 | b | | Duration, T | | | | 0.2 | | | | | | Saturation Headway A | djustment | Worksheet | | | | | | | | Prop. Left-Turns | 1.0 | 0.0 | 1.0 | 0.0 | 0.7 | 0.0 | 0.2 | | | Prop. Right-Turns | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 1.0 | 0.5 | | | Prop. Heavy Vehicle | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ht.T-adj | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | | hRT-adj | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.6 | -0.6 | | hHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | hadj, computed | 0.6 | 0.0 | 0.6 | 0.0 | 0.4 | -0.6 | -0.2 | 1.7 | | Departure Headway a | | | 1 0.0 | 0.0 | 0.4 | 1 -0.0 | | <u> </u> | | hd, initial value (s) | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 7 | Ī | | x, initial | 0.01 | 0.11 | 0.01 | 0.14 | 0.05 | 0.05 | 3.20
0.10 | | | hd, final value (s) | 5.86 | 5.30 | 5.84 | 5.29 | 5.83 | 4.80 | 5.24 | | | x, final value | 0.03 | 0.19 | 0.02 | 0.23 | 0.09 | 0.08 | 0.17 | | | Move-up time, m (s) | 2. | | | .3 | 2. | · | 2. | .3 | | Service Time, t _s (s) | 3.6 | 3.0 | 3.5 | 3.0 | 3.5 | 2.5 | 2.9 | Ĭ | | Capacity and Level of | Service | | 1 | 1 | | J. | 1 | <u> </u> | | | | ound | T | bound | | bound | T | bound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Capacity (veh/h) | 266 | 379 | 260 | 405 | 305 | 309 | 364 | | | Delay (s/veh) | 8.72 | 9.23 | 8.64 | 9.54 | | | | | | OS | | | | | 9.10 | 7.91 | 8.98 | | | | A | A | A | A | A | A | Α | | | Approach: Delay (s/veh) | *** | .18 | 9.4 | | 8.4 | | 8.9 | | | LOS | | <u> </u> | <i>A</i> | | A | <u> </u> | F | \ | | ntersection Delay (s/veh) | | | | 9.0 | | | | | | ntersection LOS | | | | A | | | | | | | | ALL-WAY | STOP C | ONTROL | ANALYSI | S | | | | |--|--------------|--------------|-----------|----------------|--|------------|--------------|--|--| | General Information | | | | Site Inforn | nation | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | | | | | Intersection 01_EX_AM Jurisdiction GOLETA Analysis Year CUMULATIVE+PROJECT | | | | | | Project ID #10086 - 7400 CAT | THEDRAL OAKS | PROJECT | | | | | | | | | East/West Street: CATHEDF | | | | North/South St | reet: WINCHE | STER CANYO | N ROAD | | | | Volume Adjustments | and Site Cl | naracteristi | CS | | | | 1 6 | | | | Approach | | E | astbound | | | We | stbound | | | | Movement Volume (veh/h) | L | 2 | 118 | R
11 | 10 | | T
147 | R
11 | | | %Thrus Left Lane | 100 | , | 110 | 1.1 | 10 | | 147 | 11 | | | Approach | | l No | orthbound | | | Sour | thbound | | | | Movement | L | | T | , R | L | 300 | T | R | | | Volume (veh/h) | 36 | 3 | 19 | 60 | 25 | | 27 | 62 | | | %Thrus Left Lane | | | | | | | | | | | | East | bound | Wes | stbound | North | bound | Sout | hbound | | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | | Configuration | L | TR | ī | TR | LT | R | LTR | - | | | PHF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Flow Rate (veh/h) | 16 | 129 | 10 | 158 | 55 | 60 | 114 | | | | % Heavy Vehicles | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | No. Lanes | 2 | 2 | | 2 | 2 | 2 | | 1 | | | Geometry Group | | 5 | | 5 | | 5 | 4 | lb . | | | Duration, T | | | | 0.2 | 25 | | | | | | Saturation Headway / | Adjustment | Worksheet | | | | | | | | | Prop. Left-Turns | 1.0 | 0.0 | 1.0 | 0.0 | 0.7 | 0.0 | 0.2 | | | | Prop. Right-Turns | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 1.0 | 0.5 | | | | Prop. Heavy Vehicle | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | hLT-adj | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | | | hRT-adj | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.6 | -0.6 | | | hHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | | hadj, computed | 0.6 | 0.0 | 0.6 | 0.0 | 0.4 | -0.6 | -0.2 | | | | Departure Headway a | | | | 1 0.0 | | 1 3.0 | | | | | hd, initial value (s) | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | <u> </u> | | | x, initial | 0.01 | 0.11 | 0.01 | 0.14 | 0.05 | 0.05 | 0.10 | | | | hd, final value (s) | 5.87 | 5.30 | 5.84 | 5.29 | 5.84 | 4.81 | 5.25 | | | | x, final value | 0.03 | 0.19 | 0.02 | 0.23 | 0.09 | 0.08 | 0.17 | | | | Move-up time, m (s) | 2. | | | .3 | 2. | | | .3 | | | Service Time, t _s (s) | 3.6 | 3.0 | 3.5 | 3.0 | 3.5 | 2.5 | 2.9 | | | | Capacity and Level of | <u> </u> | I |
<u> </u> | <u> </u> | | | 4 | | | | and the second s | 1 | oound | Wes | lbound | North | bound | 1 | hbound | | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | | Capacity (veh/h) | 266 | 379 | 260 | 408 | 305 | 310 | 364 | | | | Delay (s/veh) | 8.72 | 9.24 | | -} | | | | | | | | | | 8.64 | 9.58 | 9.11 | 7.93 | 8.99 | <u> </u> | | | .OS | Α | Α | Α | A | Α | . A | A | | | | Approach: Delay (s/veh) | | .19 | | 53 | 8.50 | | <u> </u> | 99 | | | LOS | | Α | | 4 | Α | | / | 4 | | | ntersection Delay (s/veh) | | | | 9.1 | | | | | | | ntersection LOS | | | | Α | | | | | | | 1 | F 1/10 - | ALL-WA | Y STOP C | ONTROL A | NALYSIS | *************************************** | | ······································ | | |----------------------------------|---|--------------|---------------|------------------|------------------------|---|--------------|---|--| | Ceneral Information | | | | Site Informa | tion - | | | | | | Analyst | MMF | | | Intersection | | 01_EX | | | | | Agency/Co. | ATE | | | Jurisdiction | | GOLET | | | | | Date Performed | 1/13/20 | | | Analysis Year | Analysis Year EXISTING | | | | | | Analysis Time Period | | AK HOUR | | | | | | | | | Project ID #10086 - 7400 CATHE | | DJECT | | h | | TD 0411/01/D0 | | | | | East/West Street: CATHEDRAL | | | | North/South Stre | | | AU | | | | Volume Adjustments an | id Site Chara | | | | | ATTACABLE SAND SAND SAND SAND SAND SAND SAND SAND | stbound | and the second second | | | Approach
[Movement | L | | astbound
T | R | - | vve | T | R | | | Volume (veh/h) | 18 | | 76 | 14 | 17 | | 47 | 12 | | | %Thrus Left Lane | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | Approach | | No | orthbound | | | Sou | thbound | | | | Movement | L | | T | Ŕ | L | | T | R | | | Volume (veh/h) | 20 | 1 | 11 | 30 | 12 | | 46 | 31 | | | %Thrus Left Lane | | | | | <u> </u> | | | | | | | East | bound | Wes | stbound | North | nbound | South | hbound | | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | | Configuration | | TR | L | TR | LT | R | LTR | | | | PHF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Flow Rate (veh/h) | 18 | 90 | 17 | 59 | 31 | 30 | 89 | | | | % Heavy Vehicles | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | No. Lanes | 2 | 2 | | 2 | | 2 | | 1 | | | Geometry Group | 5 | | | 5 | | 5 | 4 | b | | | Duration, T | | | | 0.2 | 25 | | | | | | Saturation Headway Ad | ustment Wo | rksheet | | | | | | | | | Prop. Left-Turns | 1.0 | 0.0 | 1.0 | 0.0 | 0.6 | 0.0 | 0.1 | | | | Prop. Right-Turns | 0.0 | 0.2 | 0.0 | 0.2 | 0.0 | 1.0 | 0.3 | | | | Prop. Heavy Vehicle | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | nLT-adj | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | | | nRT-adj | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.6 | -0.6 | | | hHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | | hadj, computed | 0.6 | -0.0 | 0.6 | -0.1 | 0.4 | -0.6 | -0.1 | 1 | | | Departure Headway and | 1 | <u> </u> | | | | | | <u> </u> | | | | | 7 | T | 7 | | | | T | | | hd, initial value (s) | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | | | | c, initial | 0.02 | 0.08 | 0.02 | 0.05 | 0.03 | 0.03 | 0.08 | } | | | nd, final value (s) | 5.52
0.03 | 4.91
0.12 | 5.55
0.03 | 4.91
0.08 | 5.43
0.05 | 4.40
0.04 | 4.91
0.12 | | | | x, final value | 2. | | | 2.3 | 2. | 1 | | .3 | | | Move-up time, m (s) | | | | | | | | <u>. </u> | | | Service Time, t _s (s) | 3.2 | 2.6 | 3.2 | 2.6 | 3.1 | 2.1 | 2.6 | | | | Capacity and Level of S | ervice | | | | | | 1 | | | | | Eastl | oound | Wes | tbound | North | bound | South | nbound | | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | | Capacity (veh/h) | 268 | 340 | 267 | 309 | 281 | 280 | 339 | | | | Delay (s/veh) | 8.38 | 8.30 | 8.40 | 8.03 | 8.39 | 7.27 | 8.29 | | | | Los | A | A | A A | A A | A | A | A | | | | Approach: Delay (s/veh) | | .31 | | 12 | | 8 4 | | <u> </u> | | | | | | | | | | | | | | LOS | | <u>A</u> | | <u>A</u> | <i>P</i> | 1 | | 4 | | | Intersection Delay (s/veh) | | | | 8.1 | | | | <u> </u> | | | ntersection LOS | l | | | A | | | | | | Copyright © 2008 University of Florida, All Rights Reserved HCS+TM Version 5.4 Generated: 1/13/2011 1:22 PM #### ALL-WAY STOP CONTROL ANALYSIS General Information Signiomation 01 EX+PR PM Intersection Analyst **MMF** Jurisdiction **GOLETA** ATE Agency/Co. Analysis Year EXISTING+PROJECT Date Performed 1/13/2011 Analysis Time Period P.M. PEAK HOUR Project ID #10086 - 7400 CATHEDRAL OAKS PROJECT East/West Street: CATHEDRAL OAKS ROAD North/South Street: WINCHESTER CANYON ROAD Volume Adjustments and Site Characteristics Westbound Approach Eastbound R R Movement 17 49 12 18 14 78 Volume (veh/h) %Thrus Left Lane Approach Northbound Southbound Movement R R 20 11 32 12 46 31 Volume (veh/h) %Thrus Left Lane Eastbound Westbound Northbound Southbound L2 L2 L1 L2 L1 L1 L2 L1 L TR L TR LT R LTR Configuration 1.00 1.00 1.00 1.00 1.00 1.00 PHF 1.00 89 Flow Rate (veh/h) 18 92 17 61 31 32 4 4 4 4 4 4 % Heavy Vehicles No. Lanes 2 2 2 5 4b Geometry Group 5 5 **Duration**, T 0.25 Saturation#Headway Adjustment Worksheet Prop. Left-Turns 1.0 0.0 1.0 0.0 0.0 0.1 0.6 0.2 1.0 0.3 0.0 0.2 0.0 0.0 Prop. Right-Turns 0.0 0.0 0.0 0.0 0.0 Prop. Heavy Vehicle 0.0 0.0 0.2 ıLT-adj 0.5 0.5 0.5 0.5 0.5 0.5 0.2 RT-adi -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.6-0.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 hHV-adj -0.1 adj, computed 0.6 -0.0 0.6 -0.1 0.4 -0.6 Departure Headway and Service Time hd, initial value (s) 3.20 3.20 3.20 3.20 3.20 3.20 3.20 0.02 0.05 0.03 0.08 . initial 0.02 0.08 0.03 d, final value (s) 5.53 4.92 5.56 4.92 5.44 4.42 4.92 0.13 0.03 0.08 0.05 0.04 0.12 x, final value 0.03 2.3 love-up time, m (s) 2.3 2.3 2.3 3.2 2.6 3.3 2.6 3.1 2.1 2.6 ervice Time, t_e (s)
Capacity and Level of Service Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 268 282 339 Capacity (veh/h) 342 267 311 281 elay (s/veh) 8.39 8.33 8.41 8.06 8.41 7.30 8.31 LOS Α Α Α Α Α Α Α 8.31 7.84 *pproach: Delay (s/veh) 8.34 8.14 LOS Α Α A Α Intersection Delay (s/veh) 8.19 I'ntersection LOS opyright © 2008 University of Florida, All Rights Reserved HCS+TM Version 5.4 Generated: 1/14/2011 10:35 AM | | | ALL-WAY | STOP C | ONTROL | ANALYSI | S | | | |----------------------------------|--------------|--|---------------|---|--|---------------------------------------|--------------|-------------| | General Information | | | | Site Inform | nation | | | | | Analyst | MMF | A CONTRACT CONTRACT CONTRACT CONTRACT | | Intersection 01_EX_PM | | | | | | Agency/Co. | ATE | | | Jurisdiction GOLETA | | | | | | Date Performed | 2/23/20 | | | Analysis Year | | CUML | ILATIVE | | | Analysis Time Period | P.M. P | EAK HOUR | | | | | | | | Project ID #10086 - 7400 CA7 | | | ····· | | | | | | | East/West Street: CATHEDR | | | | North/South St | reet: WINCHE | STER CANYO | V ROAD | | | Volume Adjustments | and Site Ch | and the state of t | | | | | | | | Approach
Movement | Eas L | | astbound
T | R | L | We: | stbound
T | R | | Volume (veh/h) | 19 | , · · · · · · · · · · · · · · · · · · · | 79 | 17 | 17 | | 60 | 12 | | %Thrus Left Lane | - 19 | | 75 | • | | | | | | Approach | | l No | rthbound | | <u> </u> | Sou | thbound | | | Movement | L | | T | R | L | | T | R | | Volume (veh/h) | 21 | ! | 11 | 30 | 12 | | 46 | 32 | | %Thrus Left Lane | | | | | | | | 13 3710 | | | East | bound | Wes | tbound | North | bound | South | nbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | TR | L | TR | LT | R | LTR | | | PHF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow Rate (veh/h) | 19 | 96 | 17 | 72 | 32 | 30 | 90 | | | % Heavy Vehicles | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | No. Lanes | 2 | ? | | 2 | 2 | <u> </u> | | i | | Geometry Group | 5 | | | 5 | 5 | 5 | 4 | b | | Duration, T | | | | 0.2 | 25 | | | | | Saturation Headway A | Adiustment | Worksheet | | | | | | | | Prop. Left-Turns | 1.0 | 0.0 | 1.0 | 0.0 | 0.7 | 0.0 | 0.1 | | | Prop. Right-Turns | 0.0 | 0.2 | 0.0 | 0.2 | 0.0 | 1.0 | 0.4 | | | Prop. Heavy Vehicle | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | hLT-adj | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | | hRT-adj | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.6 | -0.6 | | | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | hHV-adj | | | <u> </u> | | | | | 1.7 | | hadj, computed | 0.6 | -0.1 | 0.6 | -0.0 | 0.4 | -0.6 | -0.1 | | | Departure Headway a | | | T | | | | 1 | T | | hd, initial value (s) | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | ļ | | x, initial | 0.02 | 0.09 | 0.02 | 0.06 | 0.03 | 0.03 | 0.08 | <u> </u> | | hd, final value (s) | 5.54 | 4.92 | 5.57 | 4.95 | 5.49 | 4.46 | 4.96 | | | x, final value | 0.03 | 0.13 | 0.03 | 0.10 | 0.05 | 0.04 | 0.12 | | | Move-up time, m (s) | 2. | | 1 | .3 | 2. | r | | .3 | | Service Time, t _s (s) | 3.2 | 2.6 | 3.3 | 2.6 | 3.2 | 2.2 | 2.7 | | | Capacity and Level of | Service | | | | | | | | | | Eastb | ound | Wes | tbound | North | bound | South | bound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Capacity (veh/h) | 269 | 346 | 267 | 322 | 282 | 280 | 340 | | | Delay (s/veh) | 8.41 | 8.36 | 8.42 | 8.19 | 8.47 | 7.33 | 8.36 | | | LOS | Α | Α | Α | Α | Α | Α | A | | | Approach: Delay (s/veh) | 8 | .37 | | 23 | 7.9 | 92 | 8 | 36 | | LOS | | A | , | 4 | A | | 1 | 4 | | Intersection Delay (s/veh) | | | I | 8.2 | ' | | .1. | *** | | Intersection LOS | | | | A | | | | | | | <u> </u> | | | ··· TM | | · · · · · · · · · · · · · · · · · · · | | | | | | ALL-WAY | STOP C | ONTROL | ANALYSI |
S | , | | |---|----------------------|--|---------------------------------------|--|----------------|-------------|--------------|---| | General Information | | | | | nation | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | MMF
ATE
2/23/2 | 011
PEAK HOUR | | Intersection 01_EX_PM Jurisdiction GOLETA Analysis Year CUMULATIVE+PROJECT | | | | ECT | | Project ID #10086 - 7400 CA | | | | | | | | | | East/West Street: CATHEDI | | | · · · · · · · · · · · · · · · · · · · | North/South St | reet: WINCHE | STER CANYON | I BOAD | | | Volume Adjustments | | | | jivorai/occar oc | reet. Wilveria | OTEN CANTON | VICAB | | | Approach | | Constitution St. Ac. of the Constitution | astbound | * | T | Wes | stbound | | | Movement | L | | T | R | L | | T | R | | Volume (veh/h) | 19 |) | 81 | 17 | 17 | | 62 | 12 | | %Thrus Left Lane | | | | | | | | | | Approach | | No | rthbound | | | Sout | thbound | | | Movement Volume (veh/h) | L | , | T
11 | R 32 | 12 | | 46 | R
32 | | %Thrus Left Lane | | <u> </u> | | 32 | 12 | | 40 | 32 | | 78 Thrus Left Lane | 1 | | 1 | | 1 | | | | | | | bound | | stbound | | bound | | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | TR | L | TR | LT | R | LTR | | | PHF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow Rate (veh/h) | 19 | 98 | 17 | 74 | 32 | 32 | 90 | | | % Heavy Vehicles No. Lanes | | | 4 | 4 | 4 | 4 | 4 | <u> </u>
1 | | Geometry Group | | <u>2</u>
5 | | <u>2</u>
5 | 2 | | | !
!b | | Duration, T | |) | ļ | 0.2 | |) | 4 | ·U | | Saturation Headway | Adinguacae | Maskabase | | 0.2 | 20 | | | | | | 7 | | 7 | T 00 | 0.7 | | | T | | Prop. Left-Turns Prop. Right-Turns | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0
1.0 | 0.1 | <u></u> | | | 0.0 | 0.2 | | | 0.0 | | 0.4 | | |
Prop. Heavy Vehicle | - | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | hLT-adj | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | | hRT-adj | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.6 | -0.6 | | hHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | hadj, computed | 0.6 | -0.1 | 0.6 | -0.0 | 0.4 | -0.6 | -0.1 | SECURIOR DESCRIPTION AND SECURIOR DESCRIPTION OF THE PROPERTY | | Departure Headway a | | | | | | | 1 | -1 | | hd, initial value (s) | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | | | x, initial | 0.02 | 0.09 | 0.02 | 0.07 | 0.03 | 0.03 | 0.08 | | | hd, final value (s) | 5.55 | 4.93 | 5.57 | 4.96 | 5.50 | 4.47 | 4.97 | | | x, final value | 0.03 | 0.13 | 0.03 | 0.10 | 0.05 | 0.04 | 0.12 | 2 | | Move-up time, m (s) | 2. | · · · · · · · · · · · · · · · · · · · | | 2.3 | 2. | | | .3 | | Service Time, t _s (s) | 3.3 | 2.6 | 3.3 | 2.7 | 3.2 | 2.2 | 2.7 | | | Capacity and Level of | Service | | | | | | 1 | | | | Eastt | oound | Wes | tbound | North | bound | South | bound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Capacity (veh/h) | 269 | 348 | 267 | 324 | 282 | 282 | 340 | | | Delay (s/veh) | 8.42 | 8.39 | 8.42 | 8.22 | 8.48 | 7.35 | 8.38 | | | LOS | A | Α | Α | Α | Α | Α | Α | | | Approach: Delay (s/veh) | | .39 | | 26 | 7.9 | | | 38 | | Los | | A | | 4 | A | | J | | | ntersection Delay (s/veh) | | /1 | | 8.2 | | | <u> </u> | • | | ntersection LOS | | | | | | | | | | | -J | | | | | | | | | 1 | | ALL-WA | AY STOP C | ONTROL A | NALYSIS | | | | |----------------------------------|--|---------------------------------------|----------------|--|---------------------------------------|---|----------------------------|---| | General Information | | 4 | | Site informa | tion - | | | | | Analyst | MMF | | | Intersection 02_EX AM Jurisdiction GOLETA Analysis Year EXISTING | | | | | | Agency/Co. Date Performed | ATE
1/13/20 | 010 | | | | | | | | Analysis Time Period | | EAK HOUR | | | | | | | | Project ID #10086 - 7400 CATH | IEDRAL OAKS RPI | ROJECT | | | | | | | | East/West Street: CALLE REA | | | | North/South Stre | et: WINCHEST | ER CANYON | AND THE PROPERTY OF STREET | Productive Commission | | Volume Adjustments a | ind Site Chara | | | | a comment | | | | | Approach
Movement | L | | Eastbound
T | R | L | We | stbound
T | R | | Volume (veh/h) | 55 | 5 | o | O | 0 | | 118 | 90 | | %Thrus Left Lane | | | | | | | | | | Approach | | | lorthbound | | | Sou | thbound | | | Movement | L | | <u> </u> | R | <u> </u> | | <u>T</u> | <u>R</u>
164 | | /olume (veh/h) | 0 | | 0 | 0 | 0 | | 0 | 104 | | %Thrus Left Lane | | | | | <u> </u> | <u> </u> | | | | | Eas | tbound | | stbound | | bound | | nbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | | <u> </u> | R | | | R | <u> </u> | | PHF | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | low Rate (veh/h) | 55 | | 118 | 90 | | | 164 | | | % Heavy Vehicles | 4 | 4 | 4 | 4 | |) | | <u>1</u>
1 | | No. Lanes | - | <u>1</u>
Ba | | <u>2</u>
5 | | <u>, </u> | 1 | | | Geometry Group
Duration, T | | oa | | 1.0 | 20 | | | · | | saturation∄₌eadway/A\ | diusiment We | irkeheet | | | | | | | | Prop. Left-Turns | 1.0 | I I I I I I I I I I I I I I I I I I I | 0.0 | 0.0 | | | 0.0 | | | Prop. Right-Turns | 0.0 | 1 | 0.0 | 1.0 | | | 1.0 | <u> </u> | | Prop. Heavy Vehicle | 0.0 | <u> </u> | 0.0 | 0.0 | <u></u> | | 0.0 | | | LT-adj | 0.0 | 0.2 | 0.5 | 0.5 | | | 0.2 | 0.2 | | RT-adj | -0.6 | -0.6 | -0.7 | -0.7 | | | -0.6 | -0.6 | | HV-adi | 1.7 | 1.7 | 1.7 | 1.7 | | | 1.7 | 1.7 | | adj, computed | 0.3 | 1 | 0.1 | -0.6 | | | -0.5 | | | Departure Headway an | | | | | <u> </u> | <u> </u> | | | | | 3.20 | 10 | 3.20 | 3.20 | i i i i i i i i i i i i i i i i i i i | I | 3.20 | | | d, initial value (s) | 0.05 | | 0.10 | 0.08 | <u> </u> | | 0.15 | | | d, final value (s) | 4.85 | | 4.97 | 4.27 | | | 3.97 | 1 | | , final value | 0.07 | <u> </u> | 0.16 | 0.11 | | | 0.18 | | | flove-up time, m (s) | | .0 | w={ | 2.3 | | | 2 | .0 | | service Time, t _s (s) | 2.9 | | 2.7 | 2.0 | | | 2.0 | | | Capacity and Level of | <u></u> | 1 | | 1 | | | | | | | | bound | Wes | stbound | North | bound | 1 | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | apacity (veh/h) | 305 | | 368 | 340 | | | 414 | | | pelay (s/veh) | 8.24 | | 8.64 | 7.48 | | | 7.84 | | | OS | A A | | A A | A A | | | A | | | pproach: Delay (s/veh) | | 1
3.24 | | .14 | | I | | 84 | | | | | | | | <u></u> | | 4 | | LOS | | Α | | <u>A</u> | <u> </u> | | | | | ntersection Delay (s/veh) | | | | 8.0
A | | | | | | HEISECHON FOS | l
Iorida, All Rights R | | | | M Version 5.4 | | | 13/2011 1:28 | | | · · · · · · · · · · · · · · · · · · · | ALL-WA | Y STOP C | ONTROL A | NALYSIS | | | | |----------------------------------|---------------------------------------|--|--|------------------|----------|-----------|--------------|----------| | General Information | | | | Site Informa | tion . | | | | | Analyst | MMF | | | Intersection | | | +PR_AM | | | Agency/Co. | ATE | | | Jurisdiction | | GOLET | | | | Date Performed | 1/13/20 | | | Analysis Year | | EXIST | ING+PROJECT | | | Analysis Time Period | | EAK HOUR | | | | | | | | Project ID #10086 - 7400 CATH | | | | | | | | | | East/West Street: CALLE REA | | | TOO WINDS THOU ALONG MICHOLY TO STRONG STRO | North/South Stre | | ER CANYON | | | | Volume Adjustments a | nd Site Chara | | | | | W- | | | | Approach
Movement | L | | astbound T | R | L | vve | stbound
T | R | | Volume (veh/h) | 55 | | 0 | Ö | 0 | | 118 | 91 | | %Thrus Left Lane | | | | | | | | | | Approach | | N | orthbound | | | Sou | ıthbound | | | Movement | L | | Т | R | L | | Т | R | | Volume (veh/h) | 0 | | 0 | 0 | 0 | | 0 | 164 | |
%Thrus Left Lane | | | | | | | | | | | East | bound | We | stbound | North | bound | South | nbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | | T | R | | | R | | | PHF | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Flow Rate (veh/h) | 55 | | 118 | 91 | | | 164 | | | % Heavy Vehicles | 4 | | 4 | 4 | | | 4 | | | No. Lanes | | | | 2 | (|) | • | 1 | | Geometry Group | 3 | a | | 5 | | | | 1 | | Duration, T | | | | 1.0 | 00 | | | | | Saturation Headway A | djustment Wo | rksheet | | | | | | | | Prop. Left-Turns | 1.0 | | 0.0 | 0.0 | | | 0.0 | | | Prop. Right-Turns | 0.0 | | 0.0 | 1.0 | | | 1.0 | | | Prop. Heavy Vehicle | 0.0 | | 0.0 | 0.0 | | | 0.0 | | | hLT-adj | 0.2 | 0.2 | 0.5 | 0.5 | | | 0.2 | 0.2 | | hRT-adj | -0.6 | -0.6 | -0.7 | -0.7 | | | -0.6 | -0.6 | | hHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | | | 1.7 | 1.7 | | hadj, computed | 0.3 | | 0.1 | -0.6 | | | -0.5 | | | Departure Headway an | | è | | | <u> </u> | | | 1 | | hd, initial value (s) | 3.20 | | 3.20 | 3.20 | | | 3.20 | | | x, initial | 0.05 | | 0.10 | 0.08 | | | 0.15 | | | nd, final value (s) | 4.85 | | 4.97 | 4.27 | | | 3.97 | | | x, final value | 0.07 | | 0.16 | 0.11 | | | 0.18 | | | Move-up time, m (s) | 2. | 0 | | 2.3 | | | | .0 | | Service Time, t _s (s) | 2.9 | | 2.7 | 2.0 | | | 2.0 | | | Capacity and Level of S | | l San Harris | <u> </u> | 1 2.0 | | <u> </u> | <u> </u> | <u>l</u> | | Capacity and Level Or | | oound | T was | stbound | North | bound | South | nbound | | | | | | 1 | | L2 | L1 | L2 | | | L1 | L2 | L1 | L2 | L1 | L L L L | 414 | L-2 | | Capacity (veh/h) | 305 | | 368 | 341 | | | | | | Delay (s/veh) | 8.24 | ************************************** | 8.64 | 7.49 | | | 7.84 | | | Los | A | | A | A | | <u></u> | A | <u> </u> | | Approach: Delay (s/veh) | 8 | .24 | 8 | .14 | | | | 84 | | LOS | | Α | | A | | | | 4 | | ntersection Delay (s/veh) | | | | 8.0 | 04 | | | | | ntersection LOS | | | | A | | | | | copyright © 2008 University of Florida, All Rights Reserved HCS+TM Version 5.4 Generated: 1/14/2011 10:35 AM #### ALL-WAY STOP CONTROL ANALYSIS Site Information General Information 02 EX PM Intersection Analyst GOLETA Jurisdiction Agency/Co. ATE **EXISTING** Analysis Year **Date Performed** 1/13/2010 Analysis Time Period P.M. PEAK HOUR Project ID #10086 - 7400 CATHEDRAL OAKS PROJECT East/West Street: CALLE REAL/US 101 NB OFF RAMP North/South Street: WINCHESTER CANYON Volume Adjustments and Site Characteristics Approach Eastbound Westbound Movement R R 144 201 Volume (veh/h) 53 0 0 0 %Thrus Left Lane Northbound Southbound Approach R Movement t R Т 0 0 125 Volume (veh/h) 0 0 0 %Thrus Left Lane Eastbound Westbound Northbound Southbound L1 L2 L2 L2 L1 L2 L1 L1 R Configuration L T R 1.00 1.00 1.00 1.00 PHF 144 201 125 Flow Rate (veh/h) 53 % Heavy Vehicles 4 4 4 4 0 1 No. Lanes Geometry Group За 5 Duration, T 1.00 Saturation Headway Adjustment Worksheet Prop. Left-Turns 0.0 1.0 0.0 0.0 1.0 rop. Right-Turns 0.0 0.0 1.0 Prop. Heavy Vehicle 0.0 0.0 0.0 0.0 hLT-adi 0.2 0.2 0.2 0.5 0.5 0.2 -0.6 -0.7 -0.7 -0.6 -0.6 RT-adj -0.6 1.7 1.7 1.7 hHV-adj 1.7 1.7 1.7 Ihadi, computed 0.3 0.1 -0.6 -0.5 Departure Headway and Service Time hd, initial value (s) 3.20 3.20 3.20 3.20 initial 0.05 0.13 0.18 0.11 4.20 d, final value (s) 4.89 4.90 4.20 x, final value 0.07 0.20 0.23 0.15 Move-up time, m (s) 2.0 2.3 2.0 ervice Time, t_s (s) 2.9 2.6 1.9 2.2 Capacity and Level of Service Eastbound Northbound Southbound Westbound L2 L1 L2 L1 L2 L1 L2 L1 Capacity (veh/h) 303 394 451 375 8.27 7.92 8.80 elay (s/veh) 8.19 LOS Α Α Α Α 8.44 7.92 Approach: Delay (s/veh) 8.27 LOS Α Α Α Intersection Delay (s/veh) 8.30 Intersection LOS opyright © 2008 University of Florida, All Rights Reserved HCS+TM Version 5.4 Generated: 1/14/2011 10:42 AM #### **ALL-WAY STOP CONTROL ANALYSIS** Ceneral/Information Site Information 02_EX+PR_PM Intersection MMF Analyst **GOLETA Jurisdiction** ATE Agency/Co. **EXISTING+PROJECT** Analysis Year 1/13/2010 **Date Performed** Analysis Time Period P.M. PEAK HOUR Project ID #10086 - 7400 CATHEDRAL OAKS PROJECT North/South Street: WINCHESTER CANYON East/West Street: CALLE REAL/US 101 NB OFF RAMP Volume Adjustments and Site Characteristics Westbound Eastbound Approach R R Movement 144 203 53 0 0 0 Volume (veh/h) %Thrus Left Lane Southbound Northbound Approach R R L Movement 125 0 0 0 0 0 [|]//olume (veh/h) %Thrus Left Lane Southbound Northbound Westbound Eastbound L2 L2 L1 L2 L1 L2 L1 L1 R R T L Configuration 1.00 1.00 1.00 1.00 PHF 125 203 53 144 Flow Rate (veh/h) 4 4 4 4 % Heavy Vehicles 1 0 No. Lanes 1 За 5 Geometry Group 1.00 Juration, T Saturation Headway Adjustment Worksheet 0.0 0.0 0.0 1.0 Prop. Left-Tums 1.0 0.0 1.0 0.0 Prop. Right-Turns 0.0 0.0 0.0 0.0 Prop. Heavy Vehicle 0.2 0.2 0.5 0.5 0.2 0.2 ıLT-adj -0.6 -0.6 -0.7 -0.7 -0.6 -0.6 iRT-adj 1.7 1.7 1.7 1.7 1.7 1.7 hHV-adj -0.5 0.1 -0.60.3 radj, computed Departure Headway and Service Time 3.20 3.20 3.20 3.20 hd, initial value (s) 0.11 0.18 0.13 0.05 t, initial 4.21 4.20 4.90 ıd, final value (s) 4.89 0.15 0.20 0.24 x, final value 0.07 2.0 2.3 2.0 Move-up time, m (s) 2.2 1.9 2.6 2.9 Service Time, t_e (s) Capacity and Level of Service Southbound Northbound Westbound Eastbound L1 L2 L1 L2 L1 L2 L2 L1 375 394 453 303 Capacity (veh/h) 7.93 8.20 8.27 8.80 Delay (s/veh) Α Α Α Α LOS 7.93 8.45 8.27 Approach: Delay (s/veh) A Α Α LOS 8.31 Intersection Delay (s/veh) Α 'ntersection LOS 10:36 AM Generated: 1/14/2011 copyright © 2008 University of Florida, All Rights Reserved | | | ALL-V | WAY STOP | CONTROL A | NALYSIS | ··· | | | |---------------------------------------|--|------------------|------------|-----------------|-------------------------|---------------------------------------|--|------------------| | General information | | | | Site Inform | | | | | | Analyst | MMF | | | Intersection | | 02_C | | | | Agericy/Co. | ATE | | | Jurisdiction | | GOLE | | | | Date Performed Analysis Time Period | 1/13/2
Δ M J | 010
PEAK HOUR | | Analysis Year | | COMC | ILATIVE | | | Project ID #10086 - 7400 CATH | | | | | | · · · · · · · · · · · · · · · · · · · | | | | East/West Street: CALLE REAL | | | | North/South Str | et: WINCHES | TER CANYON | ****** | | | Volume Adjustments a | nd Site Char | acteristics | | | | | | | | Approach | | | Eastbound | <u> </u> | | We | estbound | | | Movement
Volume (veh/h) | 8 | 0 | 0 | R
0 | <u>L</u> | | T 233 | 118 | | %Thrus Left Lane | | | | | | | 233 | 110 | | Approach | | | Northbound | | | Sor | i
uthbound | | | Movement | L | | Т | R | L | | T | R | | Volume (veh/h) | (|) | 0 | 0 | 0 | | 0 | 160 | | %Thrus Left Lane | | | | | | | | | | | Eas | tbound | We | estbound | Nor | thbound | Sou | thbou n d | | XII | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | <u> </u> | T | R | | | R | | | PHF | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Flow Rate (veh/h) | 80 | | 233 | 118 | | | 160 | | | % Heavy Vehicles | 4 | <u> </u> | 4 | 4 | | <u></u> | 4 | | | No. Lanes | | <u>1</u> | | 2 | | 0 | | 1 | | Geometry Group Ouration, T | | 3a | | 5 | | | | 1 | | Saturation Headway Ad | <u> </u> | | | 1.0 | <i>J</i> U | | | | | | | rksneet | | T | I | 1 | 1 | | | Prop. Left-Turns | 1.0 | <u> </u> | 0.0 | 0.0 | | | 0.0 | | | Prop. Right-Turns | 0.0 | | 0.0 | 1.0 | | | 1.0 | | | Prop. Heavy Vehicle | 0.0 | | 0.0 | 0.0 | | | 0.0 | | | LT-adj | 0.2 | 0.2 | 0.5 | 0.5 | | | 0.2 | 0.2 | | iRT-adj | -0.6 | -0.6 | -0.7 | -0.7 | | | -0.6 | -0.6 | | nHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | | | 1.7 | 1.7 | | adj, computed | 0.3 | | 0.1 | -0.6 | | | -0.5 | | | Departure Headway and | Service Tin | ie | | | | | | | | nd, initial value (s) | 3.20 | | 3.20 | 3.20 | | | 3.20 | | | , initial | 0.07 | <u> </u> | 0.21 | 0.10 | | | 0.14 | | | d, final value (s) | 5.03 | ļ | 5.02 | 4.32 | | | 4.33 | | | r, final value | 0.11 | <u></u> | 0.33 | 0.14 | | <u> </u> | 0.19 | | | Nove-up time, m (s) | | . <u>0</u> | | 2.3 | | 1 | | 2.0 | | Service Time, t _s (s) | 3.0 | | 2.7 | 2.0 | | | 2.3 | | | Capacity and Level of S | T | | | | | | T | | | | | bound
1 | | stbound | | nbound | | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Capacity (veh/h) | 330 | | 483 | 368 | | | 410 | | | elay (s/veh) | 8.66 | | 10.14 | 7.73 | | | 8.37 | | | os | Α | | В | A | | | A | | | pproach: Delay (s/veh) | | 3.66 | 9 | .33 | | | 8. | 37 | | LOS | | Α | | A | | | | A | | ntersection Delay (s/veh) | | | | 8.9 | 18 | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | #### ALL-WAY STOP CONTROL ANALYSIS Site Information General Information Intersection 02 CU+PR AM MMF Analyst Jurisdiction **GOLETA** Agency/Co. ATE **CUMULATIVE+PROJECT** Analysis Year Date Performed 1/13/2010 A.M. PEAK HOUR Analysis Time Period Project ID #10086 - 7400 CATHEDRAL OAKS RPROJECT North/South Street: WINCHESTER CANYON East/West Street: CALLE REAL/US 101 NB OFF RAMP Volume Adjustments and Site Characteristics Approach Eastbound Westbound R R T Movement 119 233 Volume (veh/h) 80 0 0 0 %Thrus Left Lane Southbound Northbound Approach R R Movement т 160 0 0 0 0 Volume (veh/h) 0 %Thrus Left Lane Westbound Northbound Southbound **Fastbound** L2 L2 L1 L2 L1 L1 L2 L1 R T R L Configuration 1.00 1.00 1.00 PHF 1.00 233 160 80 119 Flow Rate (veh/h) 4 % Heavy Vehicles 4 4 4 0 1 2 1 No. Lanes 3a 5 **Geometry Group** 1.00 Duration, T Saturation Headway Adjustment Worksheet 0.0 Prop. Left-Turns 1.0 0.0 0.0 1.0 0.0 1.0 Prop. Right-Turns 0.0 0.0 0.0 0.0 0.0 Prop. Heavy Vehicle 0.2 0.2 0.2 0.2 0.5 0.5 LT-adj -0.7 -0.6 -0.6 -0.6 -0.6 -0.7 RT-adj 1.7 1.7 1.7 1.7 1.7 1.7 hHV-adi 0.1 -0.6 -0.50.3 nadj, computed Departure Headway and Service Time 3.20 3.20 3.20 3.20 hd, initial value (s) 0.14 i, initial 0.07 0.21 0.11 5.02 4.32 4.34 5.03 id, final value (s) 0.19 0.33 0.14 x, final value 0.11 2.0 2.3 2.0 Nove-up time, m (s) 2.3 3.0 2.7 2.0 Service Time, t_e (s)
Capacity and Level of Service Northbound Southbound Eastbound Westbound L1 L2 L2 L1 L2 L1 L2 L1 410 330 483 369 Capacity (veh/h) 8.66 10.14 7.74 8.37 Delay (s/veh) LOS Α В Α Α 8.37 9.33 Approach: Delay (s/veh) 8.66 Α Α Α LOS 8.98 Intersection Delay (s/veh) Α ntersection LOS | 1 | | ALL-W | AY STOP C | ONTROL AI | NALYSIS | | | | |-------------------------------------|--------------------|-----------------|------------|----------------------------|--------------|----------------|-----------------|----------------| | General Information | | | | Site Informa | lion | | | | | Analyst | MMF | | | Intersection | | 02_CU | | | | Agency/Co. | ATE | | | Jurisdiction Analysis Year | | GOLET
CUMUI | IA
LATIVE | | | Date Performed Analysis Time Period | 1/13/20
P.M. Pi | 110
EAK HOUR | | Analysis real | | 00,,,0 | | | | Project ID #10086 - 7400 CA | | | | | | | | | | East/West Street: CALLE R | | | | North/South Stree | t: WINCHESTE | R CANYON | | | | Volume Adjustments | | | | | | | | | | Approach | | | Eastbound | | | We | stbound | | | Movement | 84 | , | <u>T</u> | R
 | <u> </u> | | <u>т</u>
266 | 207 | | Volume (veh/h) | 84 | | 0 | U | 1 0 | | 200 | 207 | | %Thrus Left Lane | | | Northbound | | 1 | Sou | thbound | | | Approach
Movement | L | | T | R | L | | T | R | | Volume (veh/h) | 0 | | 0 | 0 | 0 | | 0 | 158 | | %Thrus Left Lane | | | | | | | | | | | East | bound | We | stbound | North | bound | Sout | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | | T | R | | | R | | | PHF | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Flow Rate (veh/h) | 84 | | 266 | 207 | | | 158 | | | % Heavy Vehicles | 4 | | 4 | 4 | | | 4 | | | No. Lanes | | 1 | | 2 | (|) | | 1 | | Geometry Group | 3 | а | | 5 | | | | 1 | | Ouration, T | | | | 1.0 | 0 | | | | | Saturation Headway | Adjustment Wo | rksheet | | | | | | | | Prop. Left-Turns | 1.0 | | 0.0 | 0.0 | | | 0.0 | | | Prop. Right-Turns | 0.0 | | 0.0 | 1.0 | | | 1.0 | | | Prop. Heavy Vehicle | 0.0 | | 0.0 | 0.0 | | | 0.0 | | | nLT-adj | 0.2 | 0.2 | 0.5 | 0.5 | | | 0.2 | 0.2 | | nRT-adj | -0.6´ | -0.6 | -0.7 | -0.7 | | | -0.6 | -0.6 | | hHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | | | 1.7 | 1.7 | | nadj, computed | 0.3 | | 0.1 | -0.6 | | | -0.5 | | | Departure Headway a | and Service Tim | ie. | | | | | | | | hd, initial value (s) | 3.20 | | 3.20 | 3.20 | | | 3.20 | | | c, initial | 0.07 | | 0.24 | 0.18 | | | 0.14 | | | nd, final value (s) | 5.14 | | 5.04 | 4.34 | | | 4.54 | | | x, final value | 0.12 | | 0.37 | 0.25 | | | 0.20 | | | Nove-up time, m (s) | 2. | .0 | | 2.3 | | | 2 | 2.0 | | Service Time, t _s (s) | 3.1 | | 2.7 | 2.0 | | | 2.5 | | | Capacity and Level o | f Service | | | | | | | | | | East | bound | We | stbound | North | bound | Sout | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Capacity (veh/h) | 334 | | 516 | 457 | | | 408 | | | Delay (s/veh) | 8.84 | | 10.73 | 8.48 | | | 8.67 | | | LOS | A | <u> </u> | В | A | | | Α | | | Approach: Delay (s/veh) | | 3.84 | | 0.75 | | <u> </u> | | .67 | | LOS | | A | | A | | | | A | | | | | | 9.4 | 0 | | 1 | | | Intersection Delay (s/veh) | | | | 9.4
A | | | | | | ntersection LOS | | | | TM | | | | 6/2011 11:19 A | HCS+TM Version 5.4 Generated: 2/16/2011 11:18 AM | | | ALL-W | AY STOP C | ONTROL A | NALYSIS | | | | |-------------------------------------|--------------------|-----------------|----------------|----------------------------|---------------|---------------|----------------|---------------------------------------| | General Information | | | | Site Inform | ation | | | | | Analyst | MMF | | | Intersection | | 02_CE
GOLE | J+PR_PM | | | Agency/Co. | ATE | | | Jurisdiction Analysis Year | | | ILATIVE+PROJEC | eτ | | Date Performed Analysis Time Period | 1/13/20
P.M. Pi | 110
EAK HOUR | | , aldiyolo rodi | | | | | | Project ID #10086 - 7400 CATH | | | | | | | | · · · · · · · · · · · · · · · · · · · | | East/West Street: CALLE REA | | | | North/South Str | eet: WINCHEST | ER CANYON | | | | Volume Adjustments a | | | | | | | - N J | | | Approach
Movement | | 1 | Eastbound
T | R | | | estbound
T | R | | Volume (veh/h) | 84 | 1 | o | 0 | 0 | | 266 | 209 | | %Thrus Left Lane | | | | 1, =11, 11 | | | | | | Approach | | | Northbound | | | So | uthbound | | | Movement | L | | Т | R | L | | Т | R | | /olume (veh/h) | 0 | | 0 | 0 | 0 | | 0 | 158 | | %Thrus Left Lane | | | | | | | | | | | East | bound | We | stbound | Norti | nbound | Sout | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Configuration | L | | T | R | | | R | | | PHF | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Flow Rate (veh/h) | 84 | | 266 | 209 | | | 158 | | | % Heavy Vehicles | 4 | | 4 | 4 | | | 4 | | | No. Lanes | | 1 | | 2 | | 0 | | 1 | | Geometry Group | 3 | la | | 5 | | | | 1 | | Ouration, T | | | | 1. | 00 | | | | | Saturation Headway A | djustment Wo | rksheet | | | | | | | | Prop. Left-Turns | 1.0 | | 0.0 | 0.0 | | | 0.0 | | | Prop. Right-Turns | 0.0 | | 0.0 | 1.0 | | | 1.0 | | | Prop. Heavy Vehicle | 0.0 | | 0.0 | 0.0 | | | 0.0 | | | nLT-adj | 0.2 | 0.2 | 0.5 | 0.5 | | | 0.2 | 0.2 | | nRT-adj | -0.6 | -0.6 | -0.7 | -0.7 | | | -0.6 | -0.6 | | nHV-adj | 1.7 | 1.7 | 1.7 | 1.7 | | | 1.7 | 1.7 | | nadj, computed | 0.3 | 1 | 0.1 | -0.6 | | 1 | -0.5 | | | Departure Headway an | | <u> </u>
 A | 311 | | 1 | 1 | | | | d, initial value (s) | 3.20 | | 3.20 | 3.20 | 1 | | 3.20 | 1 | | r, initial | 0.07 | | 0.24 | 0.19 | | 1 | 0.14 | 1 | | id, final value (s) | 5.14 | | 5.04 | 4.34 | | | 4.54 | 1 | | , final value | 0.12 | <u> </u> | 0.37 | 0.25 | | | 0.20 | | | Nove-up time, m (s) | | .0 | | 2.3 | | | | 2.0 | | Service Time, t _s (s) | 3.1 | | 2.7 | 2.0 | | | 2.5 | | | Capacity and Level of | | <u> </u> | | 1 | 1 | <u> </u> | | 1 | | | | bound | | stbound · | | nbound | Sout | hbound | | | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | | Capacity (veh/h) | 334 | | 516 | 459 | | | 408 | | | elay (s/veh) | 8.84 | | 10.73 | 8.50 | | | 8.68 | | | os | A | | В | A | | | Α | | | pproach: Delay (s/veh) | ···· | 3.84 | |).75 | | | 8. | .68 | | LOS | | Α | | A · | | | | Α | | | | | | 0 | 41 | | | | | ntersection Delay (s/veh) | | | | <u>9.</u> | 41 | | | | | · | TV | VO-WAY STOP | CONTR | OL SUN | MARY | | | | |-----------------------------------|-----------------|----------------|-------------|------------|------------|----------|------------|----------------| | Ceneral Information | | | | nformat | | | | | | Analyst | MMF | | Interse | | | 03_EX_A | M | | | Agency/Co. | ATE | | Jurisdi | | | GOLETA | | | | Date Performed | 1/13/2011 | | | is Year | | EXISTING | } | | | Analysis Time Period | A.M. PEA | K HOUR | | | | | | | | Project Description #100 | 086 - 7400 CATH | IEDRAL OAKS PR | OJECT | | | | | | | East/West Street: CATHE | | | | South Stre | et: NORTHG | ATE-EVER | GREEN | | | Intersection Orientation: | East-West | | Study F | Period (hr | s): 0.25 | | | | | Vehicle Volumes and | l Adijistment | S | | | | | | | | Major Street | | Eastbound | | | | Westbou | nd | NAME OF STREET | | Movement | 1 | 2 | 3 | | 4 | 5 | | 6 | | | L | Т | R | | L | Т | | R | | Volume (veh/h) | 3 | 345 | 5 | | 19 | 142 | | 7 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 |) | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR
 (veh/h) | 3 | 345 | 5 | | 19 | 142 | | 7 | | Percent Heavy Vehicles | 4 | | | | 4 | | | | | ıMedian Type | | | | Undivid | led | | | | | RT Channelized | | | 0 | l | | | | 0 | | anes | 1 | 1 | 0 | | 1 | 1 | | 0 | | Configuration | L | | TR | | L | | | TR | | Upstream Signal | | 0 | | | | 0 | | | | Vinor Street | | Northbound | | | | Southbou | ınd | | | Movement | 7 | 8 | 9 | | 10 | 11 | | 12 | | | L | Т | R | | L | T | | R | | /olume (veh/h) | 9 | 0 | 75 | | 23 | 1 | | 4 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR veh/h) | 9 | 0 | 75 | | 23 | 1 | | 4 | | ercent Heavy Vehicles | 4 | 4 | 4 | | 4 | 4 | | 4 | | Percent Grade (%) | | 0 | | | | 0 | | | | Tared Approach | | N | | | | N | | | | Storage | | 0 | | | | 0 | | | | RT Channelized | | | 0 | | | | | 0 | | anes | 0 | 1 | 0 | | 0 | 1 | | 0 | | Configuration | | LTR | | | | LTR | | | |)elay, Queue Length, and | Level of Servi | | | | | | | | | pproach | Eastbound | Westbound | | Northbou | nd | | Southbound | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | ane Configuration | L | L | | LTR | | | LTR | · · · · · | | v (veh/h) | 3 | 19 | | 84 | | | 28 | | | | 1420 | 1198 | | 651 | | | 411 | | | C (m) (veh/h)
/c | 0.00 | 0.02 | | 0.13 | - | | 0.07 | | | | | | | ļ | | | | | | 95% queue length | 0.01 | 0.05 | | 0.44 | | | 0.22 | | | Control Delay (s/veh) | 7.5 | 8.1 | | 11.3 | | | 14.4 | | | os | Α | A | <u>.</u> | В | | | В. | | | Approach Delay (s/veh) | | | | 11.3 | | | 14.4 | | | pproach LOS | | | | В | | | В | | عرر ـ pyright © 2008 University of Florida, All Rights Reserved HCS+TM Version 5.4 | | T\ | WO-WAY STOR | CONTR | OL SUMN | //ARY | | | | |-----------------------------------
--|----------------|--|--|--|----------|------------|----------------------------------| | Ceneral Information | | | | n(oumatic | | | | | | Analyst | MMF | | Interse | | | 03_EX+P | R AM | | | Agency/Co. | ATE | | Jurisdi | | | GOLETA | - | | | Date Performed | 1/13/2011 | | Analys | sis Year | | EXISTING | +PROJEC | Τ | | Analysis Time Period | A.M. PEA | K HOUR | | | | | | | | Project Description #10 | 086 - 7400 CATH | HEDRAL OAKS PR | ROJECT | | | • | | | | East/West Street: CATH | | | | South Street | t: NORTHG | ATE-EVER | GREEN | | | Intersection Orientation: | East-West | | Study F | Period (hrs) | 0.25 | | | | | Vehicle Volumes and | d Adjustment | S | | | | | | | | Major Street | The state of s | Eastbound | THE PARTY OF P | TO SECURITION OF THE SECURITIO | CONTRACTOR ACCOUNTS OF THE STATE STAT | Westbou | nd | | | Movement | 1 | 2 | 3 | | 4 | 5 | | 6 | | | L | Т | R | | L | T | | R | | Volume (veh/h) | 3 | 346 | 5 | | 19 | 145 | | 7 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 |) | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR
 (veh/h) | 3 | 346 | 5 | | 19 | 145 | | 7 | | Percent Heavy Vehicles | 4 | | | | 4 | - | | | | Median Type | | | | Undivide | <u>d</u> | | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 1 | 1 | 0 | | 1 | 1 | | 0 | | Configuration | L | | TR | | L | ļ | | TR | | Upstream Signal | | 0 | | | | 0 | | | | Minor Street | | Northbound | | | | Southbou | ınd | | | Movement | 7 | 8 | 9 | | 10 | 11 | | 12 | | | L | Τ | R | | L | Т | | R | | Volume (veh/h) | 9 | 0 | 75 | | 23 | 1 | | 4 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR (veh/h) | 9 | 0 | 75 | | 23 | 1 | | 4 | | Percent Heavy Vehicles | 4 | 4 | 4 | | 4 | 4 | | 4 | | Percent Grade (%) | | 0 | | | | 0 | | - | | Flared Approach | | N | | |
 N | | | | Storage | | 0 | | | | 0 | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 0 | 1 | 0 | | 0 | 1 | | 0 | | Configuration | | LTR | | | | LTR | | | | Delay, Queue Length, an | d Level of Servi | ce | | | | | | | | Approach | Eastbound | Westbound | | Northbound | 1 | 5 | Southbound | LDT AN ALL MANAGEMENT CONTRACTOR | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | L | L | | LTR | | | LTR | | | v (veh/h) | 3 | 19 | | 84 | | | 28 | | | C (m) (veh/h) | 1417 | 1197 | | 651 | <u> </u> | | 409 | | | v/c | 0.00 | 0.02 | | 0.13 | | ļ | 0.07 | | | | 0.01 | 0.05 | | 0.44 | | | 0.22 | | | 95% queue length | | | | | | <u></u> | | | | Control Delay (s/veh) | 7.5 | 8.1 | • | 11.3 | | | 14.4 | | | _OS | A | Α | | В | <u> </u> | | В | L | | Approach Delay (s/veh) | | | | 11.3 | | | 14.4 | | | Approach LOS | | | | В | | | В | | Copyright © 2008 University of Florida, All Rights Reserved AWD = 11.4 Sec. / Los B HCS+TM Version 5.4 Generated: 1/14/2011 10:37 AM | | | | | | | . M. | | | |-------------------------------|----------------|------------|----------|-----------|-------------|----------|-----------|--------| | | TW | O-WAY STOP | CONTR | OL SUI | MMARY | | | | | General Information | en e | | Site | Informa | tion | | | | | Analyst | MMF | | Inters | ection | | 03_EX_A | \M | | | Agency/Co. | ATE | | Jurisd | | | GOLETA | | | | Date Performed | 2/23/201 | | Analy | sis Year | | CUMULA | TIVE | | | Analysis Time Period | | AK HOUR | | | | | | | | Project Description # | | | | | | | | | | East/West Street: CA | | S ROAD | | | eet: NORT | HGATE-EV | ERGRE | EN | | Intersection Orientation | | | Study | Perioa (n | rs): 0.25 | | | | | Vehicle Volumes a | ind Adjustm | | | | | | | | | Major Street | | Eastbound | | | | Westbou | <u>nd</u> | | | Movement | 11 | 2
 | 3
R | | 4 | 5
T | | 6
R | | Volume (veh/h) | L | 354 | 5 | | L
19 | 142 | | 7 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 | , | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR | | | | | | | | | | (veh/h) | 3 | 354 | 5 | | 19 | 142 | | 7 | | Percent Heavy Vehicles | s 4 | | | | 4 | | | | | Median Type | | | | Undivid | ed | | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 1 | 1 | 0 | | 1 | 1 | | 0 | | Configuration | L | | TR | | L | | | TR | | Upstream Signal | | 0 | | | | | | | | Minor Street | | Northbound | | | | Southbou | ınd | | | Movement | 7 | 8 | 9 | | 10 | 11 | | 12 | | | L | Т | R | | L | T | | R | | Volume (veh/h) | 9 | 0 | 75 | | 23 | 1 | | 4 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 |) | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR (veh/h) | 9 | 0 | 75 | | 23 | 1 | | 4 | | Percent Heavy Vehicles | 3 4 | 4 | 4 | | 4 | 4 | | 4 | | Percent Grade (%) | | 0 | | | | 0 | | | | Flared Approach | | N | | | • | N | | | | Storage | | 0 | | | | 0 | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 0 | 1 | 0 | | 0 | 1 | | 0 | | Configuration | | LTR | | | | LTR | | | | Delay, Queue Length, | and Level of S | ervice | | - 10 | | | | | | Approach | Eastbound | Westbound | · | Vorthbour | nd | S | outhbou | ınd | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | L | L | | LTR | | | LTR | | | v (veh/h) | 3 | 19 | <u> </u> | 84 | | | 28 | | | C (m) (veh/h) | 1420 | 1189 | | 644 | | | 405 | | | v/c | 0.00 | 0.02 | | 0.13 | | | 0.07 | | | 95% queue length | 0.01 | 0.05 | | 0.45 | | | 0.22 | | | Control Delay (s/veh) | 7.5 | 8.1 | | 11.4 | | | 14.5 | | | | 7.5
A | | | 11.4
B | | <u> </u> | 14.5
B | | | LOS
Approach Delay | A | Α | | 1 | | | | | | (s/veh) | | | | 11.4 | | | 14.5 | | | Approach LOS | | | l | <i>B</i> | | | В | | Copyright © 2008 University of Florida, All Rights Reserved Aud 2 11.5 Sec 2 US B HCS+TM Version 5.4 Generated: 2/23/2011 11:27 AM 42 | | TW | O-WAY STOP | CONTR | OL S | UM | MARY | | | | | |--------------------------------------|---------------------|-------------|--------|---------|-------|----------------|--|----------------------|-------------------------|--| | General Information | on 🤼 | | Site | nform | nati | on - | | | | | | Analyst | MMF | | Inters | ection | | | 03_EX_A | | | | | Agency/Co. | ATE | | Jurisd | iction | | | GOLETA | ١ | | | | Date Performed | 2/23/201 | 1 | Analy | sis Yea | r | | CUMULA | ATIVE | +PRO | JECT | | Analysis Time Period | | AK HOUR | | | | - Marie | | | | | | Project Description # | | | | | | | | | | | | East/West Street: CA | | S ROAD | | | | | HGATE-EV | /ERG | REEN | | | Intersection Orientation | | | Study | Period | (hrs |): 0.25 | 72.000 Management (1.000 Manag | Silan Maria Constant | ni manifestrati i katin | STATE OF THE PROPERTY OF THE PARTY PA | | Vehicle Volumes a | <u>ind Adjustin</u> | | | | | | | | | | | Major Street | | Eastbound | | | | | Westbou | ınd , | | | | Movement | 1 . | 2 | 3 | | | 4 | 5 | | | <u>6</u> | | \(\frac{1}{2}\) | L | T 255 | R 5 | | | <u>L</u>
19 | 145 | | | <u>R</u>
7 | | Volume (veh/h) Peak-Hour Factor, PHF | | 355
1.00 | 1.00 | , | | 1.00 | 1.00 | | | 00 | | Hourly Flow Rate, HFR | | | | | ··· - | | | | | | | (veh/h) | 3 | 355 | 5 | | | 19 | 145 | | 7 | 7 | | Percent Heavy Vehicles | s 4 | | | | | 4 | - | | | - | | Median Type | | | | Undiv | ridec | 1 | | | | | | RT Channelized | | | 0 | | | | | | (|) | | Lanes | 1 | 1 | 0 | | | 1 | 1 | | · |) | | Configuration | L | | TR | | | L | | | T | R | | Upstream Signal | | 0 | | | | | 0 | | | | | Minor Street | | Northbound | | | | | Southbou | ınd | | | | Movement | 7 | 8 | 9 | | | 10 | 11 | | | 12 | | | L | T | R | | | L | <u>_</u> | | | R | | Volume (veh/h) | 9 | 0 | 75 | | | 23 | 1 | | | 4 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 | | | 1.00 | 1.00 | | 1.0 | 00 | | Hourly Flow Rate, HFR (veh/h) | 9 | 0 | 75 | | | 23 | 1 | | 4 | 4 | | Percent Heavy Vehicles | s 4 | 4 | 4 | | | 4 | 4 | | | 4 | | Percent Grade (%) | | 0 | • | | | | 0 | | | | | Flared Approach | | N | | | | | N | | | | | Storage |
 0 | | | | | 0 | | | | | RT Channelized | | | 0 | | | | | | (|) | | Lanes | 0 | 1 | 0 | | | 0 | 1 | | (|) | | Configuration | | LTR | | | | | LTR | | | | | Delay, Queue Length, | and Level of S | ervice | | | | | | | | | | Approach | Eastbound | Westbound | ł | Vorthbo | ound | | S | outhb | ound | | | Movement | 1 | 4 | 7 | 8 | | 9 | 10 | 1 | 1 | 12 | | Lane Configuration | L | L | | LTR | ? | | | LT | R | | | v (veh/h) | 3 | 19 | | 84 | | | | 28 | 8 | | | C (m) (veh/h) | 1417 | 1188 | | 642 | | | | 40 |)3 | | | v/c | 0.00 | 0.02 | | 0.13 | | | | 0.0 | 07 | | | 95% queue length | 0.01 | 0.05 | | 0.45 | | | | 0.2 | | | | Control Delay (s/veh) | 7.5 | 8.1 | | 11.4 | | | | 14 | | | | LOS | A. | A | | В | | | | E | | | | Approach Delay
(s/veh) | | <u> </u> | | 11.4 | l | A | | 14. | | | | Approach LOS | | | | В | | | | В | | | | | | NO MAY STOP | CONTR | | 1484 | ADV | | | | |------------------------------|--|-------------|----------------|----------------|-------------------|---|-----------|----------|----------| |
©eneral#information | | NO-WAY STOF | | orma
iforma | | | | | | | | | | Interse | | u.c. | | 03 EX PI | 1 | | | Analyst | MMF | | Jurisdi | | | | GOLETA | VI | | | Agency/Co. Date Performed | ATE
1/13/2011 | , | | is Year | | | EXISTING | • | | | Analysis Time Period | P.M. PEA | | Allalys | is i cai | | | LXISTING | • | | | Project Description #10 | | | POJECT | | · | | w | | | | East/West Street: CATH | | | | Couth Str | reet: | NORTHG | ATE-EVER | REEN | | | ntersection Orientation: | | OAD | | Period (h | | | AIL-LVLIN | JINEEIV | | | Vehicle Volumes an | | ŝ | Joseph Company | | | | | | | | Major Street | The state of s | Eastbound | | | orazione de la se | Total Service | Westbou | nd | | | Movement | 1 | 2 | 3 | | | 4 | 5 | | 6 | | | L | Т | R | | | L | T | | R | | 'Volume (veh/h) | 4 | 129 | 6 | | | 73 | 146 | | 32 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 |) | | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR | 4 | 129 | 6 | 1 | | 73 | 146 | l | 32 | | (veh/h) | | | | | | | | | | | Percent Heavy Vehicles | 4 | | | l leadis d | ided | 4 | | <u> </u> | | | Median Type | | | T | Undivi | iaea | | <u> </u> | | 0 | | RT Channelized | | | 0 | | | | | | | | anes | 1 | 1 | 0 | | | 1 | 1 | | <u>0</u> | | Configuration | L | | TR | · | | L | 0 | | TR | | Upstream Signal | | 0 | | | | | | | | | Vinor Street | | Northbound | | | | 40 | Southbou | nd
I | 40 | | Movement | 7 | 8 | 9 | | | <u>10</u> | 11 | | 12 | | | L L | T | R | | | <u>L</u> | T | | R | | /olume (veh/h) | 1 | 0 | 47 | | | 16 | 3 | | 1 00 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 | | | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR veh/h) | 1 | 0 | 47 | | | 16 | 3 | | 1 | | Percent Heavy Vehicles | 4 | 4 | 4 | | | 4 | 4 | | 4 | | Percent Grade (%) | | 0 | | | | | 0 | | | | Flared Approach | | N | | | | | N | | | | Storage | | 0 | | | | | 0 | | | | RT Channelized | | | 0 | | | | | | 0 | | anes | 0 | 1 | 0 | | | 0 | 1 | | 0 | | Configuration | | LTR | | | *** | | LTR | | | | Delay, Queue Length, an | d Level of Servi | íćé | | | | | | | | | \pproach | Eastbound | Westbound | | Northbo | und | | 5 | outhboun | d | | Movement | 1 | 4 | 7 | 8 | | 9 | 10 | 11 | 12 | | ane Configuration | L | L | | LTR | | | | LTR | | | ıv (veh/h) | 4 | 73 | | 48 | | | | 20 | | | C (m) (veh/h) | 1386 | 1437 | | 896 | $\neg \uparrow$ | | | 468 | | | /c | 0.00 | 0.05 | | 0.05 | | | | 0.04 | | | 95% queue length | 0.01 | 0.16 | | 0.17 | $\neg \uparrow$ | | | 0.13 | | | Control Delay (s/veh) | 7.6 | 7.6 | | 9.2 | | | | 13.0 | | | .OS | A | A | | A | | | | В | | | Approach Delay (s/veh) | | | | 9.2 | | <u></u> | | 13.0 | J | | \pproach LOS | | | | A | | | | В | | HCS+TM Version 5.4 Generated: 1/13/2011 1:26 PM | 1 | Т | WO-WAY STOR | CONTR | OL SU | MM | IARY | | | | |------------------------------|-----------------|-------------|---------------------------------------|-----------|-------|----------
---|--|------| | General Information | | | Site li | nome | itio | n | | | | | Analyst | MMF | | Interse | ection | | | 03_EX+P | R_PM | | | Agency/Co. | ATE | | Jurisdi | ction | | | GOLETA | | | | Date Performed | 1/13/2011 | 1 | Analys | is Year | | | EXISTING | 9+PROJE | CT | | Analysis Time Period | P.M. PEA | | | | | | | | | | Project Description #10 | | | | | | | | | | | East/West Street: CATH | | <u>OAD</u> | | | | | ATE-EVER | GREEN | | | Intersection Orientation: | | | Study F | Period (h | ırs): | 0.25 | A NEW YORK OF THE PROPERTY | NA DATE OF THE STREET AND A STR | | | Vehicle Volumes an | d Adjustment | | | | | | | | | | Major Street | | Eastbound | | | | | Westbou | nd | | | Movement | 1 | 2 | 3 | | | 4 | 5 | | 6 | | Volume (veh/h) | L | 133 | R 6 | | | <u>L</u> | T
148 | | 32 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 | | | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR | 1 | | | | | | | | | | (veh/h) | 4 | 133 | 6 | | | 73 | 148 | | 32 | | Percent Heavy Vehicles | 4 | - | | | | 4 | | | | | Median Type | | | | Undiv | ided | | · | | | | RT Channelized | | | 0 | · | | | | | 0 | | _anes | 1 | 1 | 0 | | | 1 | 1 | | 0 | | Configuration | <u> </u> | | TR | | | <u>L</u> | | | TR | | Upstream Signal | | 0 | <u> </u> | | | | 0 | | | | Minor Street | | Northbound | | | | | Southbou | nd | | | Movement | 7 | 8 | 9 | | | 10 | 11 | | 12 | | , I | L | Т | R | | | L | Т | | R | | /olume (veh/h) | 1 | 0 | 47 | | | 16 | 3 | | 1 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 | ' | | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR veh/h) | 1 | 0 | 47 | | | 16 | 3 | | 1 | | ercent Heavy Vehicles | 4 | 4 | 4 | | | 4 | 4 | | 4 | | Percent Grade (%) | | 0 | | | | | 0 | | | | Flared Approach | | N | | | | | N | | | | Storage | | 0 | | | | | 0 | | | | RT Channelized | | | 0 | | | | | | 0 | | .anes | 0 | 1 | 0 | | | 0 | 1 | | 0 | | Configuration | | LTR | | | | | LTR | <u> </u> | | | Delay, Queue Length, an | d Level of Serv | ce | | | | | | | | | \pproach | Eastbound | Westbound | | Northbo | und | | | outhboun | d | | Movement | 1 | 4 | 7 | 8 | | 9 | 10 | 11 | 12 | | .ane Configuration | L | L | | LTR | | | | LTR | | | √ (veh/h) | 4 | 73 | | 48 | | | | 20 | | | C (m) (veh/h) | 1384 | 1432 | | 891 | | | | 463 | | | /c | 0.00 | 0.05 | | 0.05 | | | | 0.04 | | | 195% queue length | 0.01 | 0.16 | | 0.17 | | | | 0.14 | | | Control Delay (s/veh) | 7.6 | 7.6 | | 9.3 | | | | 13.1 | | | .os | A | Α | | A | | | | В | | | Approach Delay (s/veh) | | | | 9.3 | | | | 13.1 | | | pproach LOS | | | · · · · · · · · · · · · · · · · · · · | A | | | | В | | ppyright © 2008 University of Florida, All Rights Reserved HCS+TM Version 5.4 Generated: 1/14/2011 10:37 AM | | 7700 | | | | | | | | |-------------------------------|-------------------------|--------------|--|-----------|-----------|---------|-----------|-------| | 1 | TW | O-WAY STO | CONTR | ROL SUI | MMARY | | | | | General Informati | <u>on</u> | | Site | linforma | tion | | | | | Analyst | MMF | | Inters | ection | | 03_CU_ | PM | | | Agency/Co. | ATE | | Juriso | diction | | GÖLETA | | | | Date Performed | 2/23/201 | 11 | Analy | sis Year | | CUMUL | ATIVE | | | Analysis Time Period | | AK HOUR | - | | | | | | | Project Description | #10086 - 74 00 (| CATHEDRAL OA | KS PROJE | ECT | | | | | | East/West Street: CA | | | | | eet: NOR1 | HGATE-E | VERGREE | N | | Intersection Orientation | n: <i>East-West</i> | | Study | Period (h | rs): 0.25 | | | | | Vehicle Volumes | and Adjustm | nents | | | | | | | | Major Street | | Eastbound | VVI spanja ma | | | Westbou | und | VIII. | | Movement | 1 | 2 | 3 | | 4 | 5 | | 6 | | | L | Т | R | | L | Т | | R | | Volume (veh/h) | 4 | 129 | 6 | | 73 | 149 | | 32 | | Peak-Hour Factor, PHI | | 1.00 | 1.00 | 2 | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR (veh/h) | 4 | 129 | . 6 | | 73 | 149 | | 32 | | Percent Heavy Vehicle | s 4 | | | | 4 | | | | | Median Type | | | | Undivide | ed | | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 1 | 1 | 0 | | 1 | 1 | | 0 | | Configuration | L | | <u>TR</u> | | <u>L</u> | | | TR | | Upstream Signal | | | | | | 0 | | | | Minor Street | | Northbound | | | | Southbo | und | | | Movement | 7 | 8 | 9 | | 10 | 11 | | 12 | | | L | Т | R | | L | Т | | R | | Volume (veh/h) | 1 | 0 | 47 | | 16 | 3 | | 3 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 |) | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR (veh/h) | | 0 | 47 | | 16 | 3 | | 3 | | Percent Heavy Vehicles | s 4 | 4 | 4 | | 4 | 4 | | 4 | | Percent Grade (%) | | 0 | | | | 0 | | | | Flared Approach | | N | | | | N | | | | Storage | | 0 | | | | 0 | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 0 | 1 | 0 | | 0 | 1 | | 0 | | Configuration | | LTR | | | | LTR | | | | Delay, Queue Length, | and Level of S | ervice | | | | | | | | Approach | Eastbound | Westbound | 1 | Vorthboun | d | s | outhbound | t | | Movement | <u>,</u> 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | L | L | | LTR | | | LTR | | | v (veh/h) | 4 | 73 | | 48 | | | 22 | | | C (m) (veh/h) | 1382 | 1437 | | 896 | | | 487 | | | v/c | 0.00 | 0.05 | | 0.05 | | | 0.05 | | | 95% queue length | 0.01 | 0.16 | | 0.17 | 1 | | 0.14 | | | Control Delay (s/veh) | 7.6 | 7.6 | | 9.2 | | | 12.7 | | | LOS | A | A | | A | | | B | | | Approach Delay | | | | 9.2 | | | 12.7 | | | (s/veh)
Approach LOS | | | :
/ 1/ | A | | | В | | | | | | | | | 1 | - | | Generated: 2/23/2011 11:30 AM | | TW | O-WAY STO | CONTR | ROL SU | MMARY | | | | |-------------------------------|----------------|---------------|----------|-----------|------------|---------|----------------|--------| | General Informati | on | | Site | linforma | ation | | | | | Analyst | MMF | | Inters | ection | | 03_CU+ | PR PM | | | Agency/Co. | ATE | | Juriso | diction | | GÖLETA | | | | Date Performed | 2/23/201 | 11 | Analy | sis Year | |
CUMUL | ATIVE+PF | ROJECT | | Analysis Time Period | P.M. PE | AK HOUR | | | | | | | | | | CATHEDRAL OA | KS PROJE | ECT | | | | | | East/West Street: CA | | (S ROAD | North/ | South St | reet: NOR7 | HGATE-E | /ERGRE | EN | | Intersection Orientation | : East-West | | Study | Period (h | nrs): 0.25 | | | | | Vehicle Volumes: | and Adjustm | ient s | | *** | | | | | | Major Street | | Eastbound | | | | Westbou | ınd | | | Movement | 11 | 2 | 3 | | 4 | 5 | | 6 | | | L | Т | R | | L | T | | R | | Volume (veh/h) | 4 | 133 | 6 | | 73 | 151 | | 32 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 | 2 | 1.00 | 1.00 | 4810 | 1.00 | | Hourly Flow Rate, HFR (veh/h) | 4 | 133 | 6 | | 73 | 151 | | 32 | | Percent Heavy Vehicle | s 4 | | | | 4 | | | | | Median Type | | | | Undivid | led | | | | | RT Channelized | | | . 0 | | | | | 0 | | Lanes | 1 | 1 | 0 | | 1 | 1 | | 0 | | Configuration | L | | TR | | L | | | TR | | Upstream Signal | | 0 | | | | 0 | | | | Minor Street | | Northbound | | | | Southbo | und | | | Movement | 7 | 8 | 9 | | 10 | 11 | | 12 | | | L | Т | R | | L | Т | | R | | Volume (veh/h) | 1 | 0 | 47 | | 16 | 3 | | 3 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 |) | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR (veh/h) | 1 | 0 | 47 | | 16 | 3 | | 3 | | Percent Heavy Vehicles | s 4 | 4 | 4 | | 4 | 4 | | 4 | | Percent Grade (%) | | 0 | | | | 0 | | | | Flared Approach | | N | | | | N | | | | Storage | | 0 | | | | 0 | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 0 | 1 | 0 | | 0 | 1 | | 0 | | Configuration | | LTR | | | | LTR | | | | Delay, Queue Length, | and Level of S | ervice | | | | | 70 N. S. S. S. | | | Approach | Eastbound | Westbound | | Vorthbou | nd | S | outhboun | d | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | L | L | | LTR | | | LTR | | | v (veh/h) | 4 | 73 | | 48 | | | 22 | | | C (m) (veh/h) | 1380 | 1432 | | 891 | | | 482 | | | v/c | 0.00 | 0.05 | | 0.05 | | | 0.05 | | | 95% queue length | 0.01 | 0.16 | | 0.17 | | | 0.14 | | | Control Delay (s/veh) | 7.6 | 7.6 | | 9.3 | | | 12.8 | | | LOS | Α | A | | A | | | В | | | Approach Delay
(s/veh) | | | | 9.3 | | | 12.8 | | | Approach LOS | | | | Α | | | В | | | | | | | | ····· | | | | Generated: 2/23/2011 11:31 AM INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: JAN. 11, 2011 TIME PERIOD: A.M. PEAK HOUR N/S STREET: E/W STREET: ALAMEDA AVENUE **CATHEDRAL OAKS ROAD** CONTROL TYPE: SIGNAL | | | | | | T | RAFFIC | VOLU | ME SU | MMARY | • | | | | |-----|---------------|-----|-------|------|-----|--------|------|-------|-------|-----|-----|----------|---| | | | NOR | TH BC | DUND | SOL | ЈТН ВО | UND | EAS | T BOU | ND | WE | ST BOUNI |) | | VO | LUMES | L | T | R | L | T | R | L | T | R | L | T | R | | (A) | EXISTING: | 64 | 0 | 243 | 0 | 0 | 0 | 0 | 384 | 122 | 196 | 170 | 0 | | (B) | PROJECT-ADDED | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 0 | 0 | 10 | 0 | | (C) | CUMULATIVE | 74 | 0 | 310 | 0 | 0 | 0 | 0 | 384 | 130 | 208 | 170 | 0 | # **GEOMETRICS** LANE GEOMETRICS NORTH BOUND L R SOUTH BOUND **EAST BOUND** **WEST BOUND** T R LT REF: 04AM TRAFFIC SCENARIOS SCENARIO 1 = EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 - CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | | | | LEVE | L OF SE | RVICE CALCULATION | NS . | | | | | | |---------|-------|----------|-----|------|--------------|-------------------|------------|------------|------------|------------|---|---| | MOVE- | # OF | | | SCE | NARIO V | /OLUMES | _ | | SCENARIO ' | V/C RATIOS | | | | MENTS | LANES | CAPACITY | 1 1 | 2 | 3 | 4 | 11 | 2 | 3 | 4 | | | | NBL | 1 1 | 1600 | 64 | 64 | 74 | 74 | 0.040 * | 0.040 * | 0.046 * | 0.046 * | ļ | | | NBT | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | | | NBR (a) | 1 | 1600 | 185 | 185 | 236 | 236 | 0.116 | 0.116 | 0.148 | 0.148 | | | | SBL | 0 | 0 | 0 | 0 | 0 | 0 | - | - | _ | _ | | | | SBT | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | 1 | | SBR | 0 | 0 | 0 | 0 | 0 | 0 | - | • | - | - | | | | EBL | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | | | EBT | 1 1 | 1600 | 384 | 415 | 384 | 415 | 0.240 * | 0.259 * | 0.240 * | 0.259 * | | | | EBR (b) | 1 | 1600 | 82 | 82 | 87 | 87 | 0.051 | 0.051 | 0.054 | 0.054 | | | | WBL | 1 | 1600 | 196 | 196 | 208 | 208 | 0.123 * | 0.123 * | 0.130 * | 0.130 * | | | | WBT | 1 | 1600 | 170 | 180 | 1 <i>7</i> 0 | 180 | 0.106 | 0.113 | 0.106 | 0.113 | | | | WBR | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | _ | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | | то | | | | CITY UTILIZATION: | 0.503
A | 0.522
A | 0.516
A | 0.535
A | | | **NOTES:** RTOR: (a) 24% - RT NOT CRITICAL DUE TO RIGHT-TURN OVERLAP (b) 33% Printed: 02/23/11 INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: JAN. 11, 2011 TIME PERIOD: P.M. PEAK HOUR N/S STREET: ALAMEDA AVENUE E/W STREET: CATHEDRAL OAKS ROAD CONTROL TYPE: SIGNAL | | | | | T | RAFFIC | VOLU! | ME SU | MMARY | | | | | |-------------------|-----|-------|-----|-----|--------|-------|-------|--------|----|-----|----------|---| | | NOR | TH BO | UND | SOL | JTH BO | UND | EAS | T BOUN | ۸D | W | ST BOUNE |) | | VOLUMES | L | T | R | L | T | R | L | T | R | L | T | R | | (A) EXISTING: | 26 | 0 | 68 | 0 | 0 | 0 | 0 | 175 | 10 | 86 | 283 | 0 | | (B) PROJECT-ADDED | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 35 | 0 | | (C) CUMULATIVE | 26 | 0 | 71 | 0 | 0 | 0 | 0 | 175 | 11 | 111 | 284 | 0 | # **GEOMETRICS** LANE GEOMETRICS NORTH BOUND **SOUTH BOUND** **EAST BOUND** **WEST BOUND** L R TR LT REF: 04PM # TRAFFIC SCENARIOS SCENARIO 1 = EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 = CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | | | | LEVE | L OF SE | RVICE CALCUL | ATION | NS . | | | | | |---------|--|----------|----------------------|---|--------------|------------------|-----------------------
--|-------------------------|---|------------|---------------------| | MOVE- | #OF | | | SCE | NARIO ' | VOLUMES | | _ | | SCENARIO ' | V/C RATIOS | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | | 1 | 2 | 3 | 4 | | | NBL | 1 | 1600 | 26 | 26 | 26 | 26 | | 0.016 * | 0.016 * | 0.016 * | 0.016 * | | | NBT | 0 | 0 | 0 | 0 | 0 | 0 | | - | - | - | - | | | NBR (a) | 1 | 1600 | 20 | 20 | 21 | 21 | | 0.013 | 0.013 | 0.013 | 0.013 | | | SBL | | 0 | 0 | 0 | 0 | 0 | | _ | _ | | | | | SBT | | 0 | ő | 0 | 0 | 0 | | _ | [| _ | _ | | | SBR | 0 | 0 | ő | ō | 0 | ō | | - | - | - | - | | | EBL | 0 | 0 | 0 | 0 | 0 | 0 | | - | - | - | - | | | EBT | 1 | 1600 | 175 | 195 | 1 <i>7</i> 5 | 195 | | 0.109 | 0.122 | 0.109 | 0.122 | | | EBR (b) | 1 1 | 1600 | 10 | 10 | 11 | 11 | | 0.006 | 0.006 | 0.007 | 0.007 | | | WBL | 1 | 1600 | 86 | 86 | 111 | 111 | | 0.054 | 0.054 | 0.069 | 0.069 | | | WBT | 1 | 1600 | 283 | 318 | 284 | 319 | | 0.177 * | 0.199 * | 0.178 * | 0.199 * | | | WBR | 0 | 0 | 0 | 0 | 0 | 0 | | - | - | - | - | | | | | | | | | LOST TIME: | | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | то1 | | | | CITY UTILIZATION | N: | 0.293
A | 0.315
A | 0.294
A | 0.315
A | | | NOTES: | The Control of Co | | na nyaéta diritahana | *************************************** | | | i kiriwa kwa marana a | The state of s | Manager Manager Company | 1975 C. | | construction of the | RTOR: (a) 71% (b) 0% Printed: 02/23/11 INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: OCT. 10, 2009 TIME PERIOD: A.M. PEAK HOUR N/S STREET: E/W STREET: **GLEN ANNIE ROAD CATHEDRAL OAKS ROAD** CONTROL TYPE: SIGNAL | | TRAFFIC VOLUME SUMMARY | | | | | | | | | | | | |---|------------------------|----|-----|----|----|---|-----|-----|-----|-----------|-----|----| | NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND | | | | | | | | | | | | | | VOLUMES | L | Т | R | L | T | R | L L | Ţ | R | L | T | R | | (A) EXISTING: | 295 | 30 | 100 | 9 | 18 | 2 | 6 | 427 | 349 | 55 | 355 | 13 | | (B) PROJECT-ADDED | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 27 | 0 | 1 | 0 | | (C) CUMULATIVE | 290 | 41 | 100 | 14 | 29 | 2 | 10 | 435 | 343 | 79 | 355 | 31 | **GEOMETRICS** LANE GEOMETRICS NORTH BOUND L TR SOUTH BOUND L TR **EAST BOUND** L TR **WEST BOUND** L TR REF: 05AM TRAFFIC SCENARIOS SCENARIO 1 - EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 = CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | | | | LEVE | OF SE | RVICE CALCULATIO | ONS | | | | | |---------|-------------------------------------|--|-----|------|-------------------|---|----------------------------|------------|--------------------|-------------------|----------------| | MOVE- | # OF | | | SCE | NARIO \ | /OLUMES | | | SCENARIO Y | V/C RATIOS | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | NBL | 1 1 | 1600 | 295 | 304 | 290 | 299 | 0.184 * | 0.190 * | 0.181 * | 0.187 * | | | NBT | 1 1 | 1600 | 30 | 30 | 41 | 41 | 0.054 | 0.054 | 0.061 | 0.061 | | | NBR (a) | 0 | 0 | 56 | 56 | 56 | 56 | - | - | - | - | | | SBL | 1 | 1600 | 9 | 9 | 14 | 14 | 0.006 | 0.006 | 0.009 | 0.009 | | | SBT | 1 | 1600 | 18 | 18 | 29 | 29 | 0.012 * | 0.012 * | 0.019 * | 0.019 * | | | SBR (b) | 0 | 0 | 1 | 1 | 1 | 1 | - | - | - | - | | | EBL. | 1 1 | 1600 | 6 | 6 | 10 | 10 | 0.004 | 0.004 | 0.006 | 0.006 | | | EBT | 1 1 | 1600 | 427 | 431 | 435 | 439 | 0.419 * | 0.434 * | 0.422 * | 0.436 * | | | EBR (c) | 0 | 0 | 244 | 263 | 240 | 259 | - | - | - | - | | | WBL | 1 | 1600 | 55 | 55 | 79 | 79 | 0.034 * | 0.034 * | 0.049 * | 0.049 * | | | WBT | 1 1 | 1600 | 355 | 356 | 355 | 356 | 0.228 | 0.228 | 0.235 | 0.236 | | | WBR (d) | 0 | 0 - | 9 | 9 | 21 | 21 | - | - | - | - | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | T | | | | CITY
UTILIZATION: | 0.749
C | 0.770
C | 0 .771
C | 0.791
C | | | NOTES: | one services of the second services | - no seem of the control of the state of the seems | | | TAXABLE PARTER OF | attended to the second of | A A Service and an Arisban | | | | 1.W.2004 15.71 | NOTES: RTOR: (a) 44% (b) 50% (c) 30% (d) 31% Printed: 02/16/11 INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: OCT. 10, 2009 TIME PERIOD: P.M. PEAK HOUR N/S STREET: **GLEN ANNIE ROAD** E/W STREET: CATHEDRAL OAK\$ ROAD CONTROL TYPE: SIGNAL | | TRAFFIC VOLUME SUMMARY | | | | | | | | | | | | | |-------------------|------------------------|-------|-----|-----|-------|-----|-----|-------|-----|----|---------|----|--| | | NOR | TH BO | UND | SOU | ТН ВО | UND | EAS | T BOU | ND | WI | ST BOUN |) | | | VOLUMES | L | T | R | L | T | R | L | T | R | L | T | R | | | (A) EXISTING: | 282 | 24 | 88 | 8 | 26 | 4 | 3 | 216 | 156 | 84 | 222 | 16 | | | (B) PROJECT-ADDED | 31 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 18 | 3 | 4 | 0 | | | (C) CUMULATIVE | 266 | 41 | 113 | 15 | 31 | 18 | 3 | 215 | 146 | 84 | 220 | 26 | | **GEOMETRICS EAST BOUND** SOUTH BOUND WEST BOUND LANE GEOMETRICS NORTH BOUND L TR L TR L TR REF: 05PM L TR TRAFFIC SCENARIOS SCENARIO 1 - EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 = CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | MOVE- | # OF | | | SCE | NARIO V | OLUMES | _ | | SCENARIO Y | V/C RATIOS | | |---------|-------|----------|-------------|-------------|----------|-------------------|---------|---------|------------|------------|---| | MENTS | LANES | CAPACITY | 11 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | NBL | 1 | 1600 | 282 | 313 | 266 | 297 | 0.176 * | 0.196 * | 0.166 * | 0.186 * | | | NBT | 1 1 | 1600 | 24 | 24 | 41 | 41 | 0.048 | 0.048 | 0.068 | 0.068 | | | NBR (a) | 0 | 0 | 53 | 53 | 68 | 68 | - | - | - | - | | | SBL | 1 | 1600 | 8 | 8 | 15 | 15 | 0.005 | 0.005 | 0.009 | 0.009 | | | SBT | 1 | 1600 | 26 | 26 | 31 | 31 | 0.017 * | 0.017 * | 0.023 * | 0.023 * | | | SBR (b) | 0 | 0 | 1 | 1 | 5 | 5 . | - | - | - | - | | | EBL | 1 | 1600 | 3 | 3 | 3 | 3 | 0.002 | 0.002 | 0.002 | 0.002 | | | EBT | 1 | 1600 | 216 | 218 | 215 | 217 | 0.201 * | 0.209 * | 0.196 * | 0.204 * | | | EBR (c) | 0 | 0 | 105 | 11 <i>7</i> | 98 | 110 | - | - | - | - | | | WBL | 1 | 1600 | 84 | 87 | 84 | 87 | 0.053 * | 0.054 * | 0.053 * | 0.054 * | | | WBT | 1 | 1600 | 222 | 226 | 220 | 224 | 0.145 | 0.148 | 0.148 | 0.150 | 1 | | WBR (d) | 0 | 0 | 10 | 10 | 16 | 16 | - | - | - | - | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | | TOTAL INTER | SECTION | N CAPAC | TITY UTILIZATION: | 0.547 | 0.576 | 0.538 | 0.567 | | | | | | | SCENAR | IO LEVEI | . OF SERVICE: | A | Α | Α | A | | **NOTES:** RTOR: (a) 40% (b) 75% (c) 33% (d) 38% 02/16/11 Printed: INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: **NOVEMBER 3, 2009** TIME PERIOD: A.M. PEAK HOUR N/S STREET: GLEN ANNIE ROAD U.S. 101 NB RAMPS-CALLE REAL E/W STREET: CONTROL TYPE: SIGNAL | | | | | Ţ | RAFFIC | VOLU | ME SU! | MARY | Y | | | | _ | |-------------------|-------------|-----|----|---------|--------|------|--------|------|-----|-----|-----|-----|---| | | NOR | ND | WE | ST BOUN | D | _ | | | | | | | | | VOLUMES | L | T | R | L | T | R | L | T | R | L | Т | R | | | (A) EXISTING: | 15 <i>7</i> | 160 | 23 | 9 | 568 | 6 | 43 | 4 | 728 | 602 | 392 | 236 | | | (B) PROJECT-ADDED | 0 | 4 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | | | (C) CUMULATIVE | 159 | 161 | 51 | 59 | 554 | 6 | 43 | 4 | 728 | 738 | 426 | 242 | | SPLIT PHASED GEOMETRICS NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND LANE GEOMETRICS LL T TR L TR L LT TR # TRAFFIC SCENARIOS SCENARIO 1 = EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 = CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | | | | LEVE | L OF SE | RVICE CALCULATIO | NS | | | | | |---------|--|----------|-------------|----------------------|---------|---------------------------------|---|--------------------|---|-------------------
--| | MOVE- | # OF | | _ | SCE | NARIO V | /OLUMES | | | SCENARIO 1 | V/C RATIOS | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | NBL | 2 | 3200 | 157 | 157 | 159 | 159 | 0.049 * | 0.049 * | 0.050 * | 0.050 * | | | NBT | 2 | 3200 | 160 | 164 | 161 | 165 | 0.053 | 0.054 | 0.057 | 0.058 | | | NBR (a) | 0 | 0 | 9 | 9 | 20 | 20 | - | - | - | - | | | SBL | 1 1 | 1600 | 9 | 9 | 59 | 59 | 0.006 | 0.006 | 0.037 | 0.037 | | | SBT | 2 | 3200 | 568 | 595 | 554 | 581 | 0.179 * | 0.187 * | 0.174 * | 0.183 * | | | SBR (b) | 0 | 0 | 4 | 4 | 4 | 4 | - | - | - | - | | | EBL. | 1 | 1600 | 43 | 43 | 43 | 43 | 0.027 | 0.027 | 0.027 | 0.027 | | | EBT | 2 | 3200 | 4 | 4 | 4 | 4 | 0.145 * | 0.145 * | 0.145 * | 0.145 * | | | EBR (c) | 0 | 0 | 459 | 459 | 459 | 459 | • | - | | - | | | WBL | 0 | 0 | 602 | 602 | 738 | 738 | - | - | - | - | | | WBT | 3 | 4800 | 392 | 392 | 426 | 426 | 0.236 * | 0.237 * | 0.272 * | 0.273 * | | | WBR (d) | 0 | 0 | 139 | 142 | 143 | 146 | - | - | - | - | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | тот | | | | ITY UTILIZATION:
OF SERVICE: | 0.709
C | 0. 718
C | 0.741
C | 0.751
C | | | NOTES: | and the state of t | | • *** • *** | as for a long govern | | 1,5 (10.1) | on the other continues of the | | it was a sed combinately seen as a series | | The second secon | RTOR: (a) 61% (b) 33% (c) 37% (d) 41% Printed: 02/16/11 REF: 06AM INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: **NOVEMBER 3, 2009** TIME PERIOD: P.M. PEAK HOUR N/S STREET: GLEN ANNIE ROAD E/W STREET: U.S. 101 NB RAMPS-CALLE REAL CONTROL TYPE: SIGNAL **SPLIT PHASED** | | | | | | TR | AFFIC V | OLUM | E SUM | MARY | | | | | |-----|---------------|-----|--------|-----|-----|---------|------|-------|-------|-----|------|---------|-----| | | | NOF | RTH BO | UND | SOL | JTH BO | UND | EAS | T BOU | ND | WE | ST BOUN | D | | VOL | JMES | L | T | R | L | Т | R | L | T | R | L | Т | R | | (A) | EXISTING: | 299 | 232 | 160 | 22 | 308 | 12 | 11 | 2 | 331 | 1021 | 423 | 155 | | (B) | PROJECT-ADDED | 0 | 13 | 0 | 0 | 18 | 0 | 0 | 0 | Ó | 0 | 0 | 18 | | (C) | CUMULATIVE | 289 | 271 | 322 | 24 | 286 | 23 | 37 | 13 | 308 | 1236 | 485 | 168 | | | • | | | | | | | | | | | | | | | GEOMETRICS | | | | | | | | | | | | | | |-----------------|------------------------|-----------------------|----------------------|-----------------------|--|--|--|--|--|--|--|--|--|--| | LANE GEOMETRICS | NORTH BOUND
LL T TR | SOUTH BOUND
L T TR | EAST BOUND
L TR R | WEST BOUND
L LT TR | | | | | | | | | | | # TRAFFIC SCENARIOS SCENARIO 1 = EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 = CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | | | | LEVEL | OF SER | RVICE CALCULAT | IONS | | | | | |---------|-------|----------|------|-----------|--------|-------------------|------------|------------|------------|------------|--| | MOVE- | # OF | | | <u>sc</u> | ENARIÓ | VOLUMES | | | SCENARIO | V/C RATIOS | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 11 | 2 | 3 | 4 | | | NBL | 2 | 3200 | 299 | 299 | 289 | 289 | 0.093 * | 0.093 * | 0.090 * | 0.090 * | | | NBT | 2 | 3200 | 232 | 245 | 271 | 284 | 0.098 | 0.103 | 0.137 | 0.141 | | | NBR (a) | 0 | 0 | 83 | 83 | 167 | 167 | - | - | - | - | | | SBL. | 1 | 1600 | 22 | 22 | 24 | 24 | 0.014 | 0.014 | 0.015 | 0.015 | | | SBT | 2 | 3200 | 308 | 326 | 286 | 304 | 0.099 * | 0.105 * | 0.095 * | 0.101 * | | | SBR (b) | 0 | 0 | 10 | 10 | 19 | 19 | - | - | - | - | | | EBL. | 1 | 1600 | 11 | 11 | 37 | 37 | 0.007 | 0.007 | 0.023 | 0.023 | | | EBT | 2 | 3200 | 2 | 2 | 13 | 13 | 0.076 * | 0.076 * | 0.074 * | 0.074 * | | | EBR (c) | 0 | 0 | 242 | 242 | 225 | 225 | - | - | - | - | | | WBL | 0 | 0 | 1021 | 1021 | 1236 | 1236 | - | - | | - | | | WBT | 3 | 4800 | 423 | 423 | 485 | 485 | 0.325 * | 0.328 * | 0.384 * | 0.387 * | | | WBR (d) | 0 | 0 | 115 | 128 | 124 | 138 | - | - | - | - | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | 1 | | | | CITY UTILIZATION: | 0.693
B | 0.702
B | 0.743
C | 0.752
C | | RTOR: (a) 48% (b) 17% (c) 27% (d) 26% Printed: 02/16/11 REF: 06PM INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: **NOVEMBER 3, 2009** TIME PERIOD: A.M. PEAK HOUR U.S. SB 101 RAMPS N/S STREET: STORKE ROAD E/W STREET: CONTROL TYPE: SIGNAL | | | | | | Т | RAFFIC | VOLU | ME SU | MARY | 1 | | | | | |---|---------------|----|-----|------|-----|--------|------|-------|------|-----|---|---|---|--| | NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND | | | | | | | | | | | | | | | | VO | LUMES | L | Т | R | L | T | R | L | T | R | L | T | R | | | (A) | EXISTING: | 0 | 326 | 811 | 831 | 1067 | 0 | 15 | 2 | 168 | 0 | 0 | 0 | | | (B) | PROJECT-ADDED | Q. | 4 | 0 | 16 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | (C) | CUMULATIVE | 0 | 349 | 1029 | 914 | 1106 | 0 | 22 | 3 | 289 | 0 | 0 | 0 | | | GEOMETRICS | | | | | | | | | | | | | |-----------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|--|--|--| | LANE GEOMETRICS | NORTH BOUND
TT R | SOUTH BOUND
LL TT | EAST BOUND
LT R | WEST BOUND | | | | | | | | | # TRAFFIC SCENARIOS SCENARIO 1 = EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 - CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | | | | LEVE | L OF SE | RVICE CALCULATIO | NS | | | | | |---------|-------|----------|---|--------|------------|------------------------------------|---------|------------|------------|------------|---| | MOVE- | # OF | | | SCE | NARIO | VOLUMES | _ | | SCENARIO ' | V/C RATIOS | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | NBL | 0 | 0 | 0 | 0 | 0 | 0 | | _ | _ | _ | | | NBT | 2 | 3200 | 326 | 330 | 349 | 353 | 0.102 | 0.103 | 0.109 | 0.110 | | | NBR (a) | 1 | 1600 | 633 | 633 | 803 | 803 | 0.396 * | 0.396 * | 0.502 * | 0.502 * | | | SBL | 2 | 3200 | 831 | 847 | 914 | 930 | 0.260 * | 0.265 * | 0.286 * | 0.291 * | | | SBT | 2 | 3200 | 1067 | 1078 | 1106 | 1117 | 0.333 | 0.337 | 0.346 | 0.349 | | | SBR | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | | EBL | 0 | 0 | 15 | 15 | 22 | 22 | _ | - | _ | - | _ | | EBT | 1 | 1600 | 2 | 2 | 3 | 3 | 0.011 | 0.011 | 0.016 | 0.016 | · | | EBR (b) | 1 | 1600 | 44 | 44 | <i>7</i> 5 | 75 | 0.028 * | 0.028 * | 0.047 * | 0.047 * | | | WBL | 0 | 0 | 0 | 0 | 0 | 0 | | - | - | - | | | WBT | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | | WBR | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | тот | | | | CITY UTILIZATION:
L OF SERVICE: | 0.784 | 0.789
C | 0.935 | 0.940
E | | | NOTES: | | | Park See some see see see see see see see see see s | JUENAK | IO LEVE | L OF SERVICE: | С | <u></u> | E | E | | RTOR: (a) 22% (b) 74% Printed: 02/16/11 REF: 07AM INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: **NOVEMBER 3, 2009** TIME PERIOD: P.M. PEAK HOUR N/S STREET: E/W STREET: STORKE ROAD **U.S. SB 101 RAMPS** CONTROL TYPE: SIGNAL | | | | | Т | RAFFIC | VOLU | ME SU | MMAR | Y | | | | | |-------------------|--|--------|------|-----|---------|------|-------|-------|----------|---|---------|---|--| | | NO | RTH BO | UND | SOL | JTH BOL | JND | EAS | T BOU | ND | W | ST BOUN | D | | | VOLUMES | <u> L </u> | T | R | L | T | R | L | T | R | L | T | R | | | (A) EXISTING: | 0 | 678 | 1070 | 321 | 1338 | 0 | 13 | 0 | 43 | 0 | 0 | 0 | | | (B) PROJECT-ADDED | 0 | 13 | 0 | 11 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | (C) CUMULATIVE | 0 | 849 | 1310 | 316 | 1515 | 0 | 32 | 0 | 144 | 0 | 0 | 0 | | **GEOMETRICS** LANE GEOMETRICS **NORTH BOUND** **SOUTH BOUND** **EAST BOUND** **WEST BOUND** REF: 07PM TT R LL TT LT R TRAFFIC SCENARIOS SCENARIO 1 = EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)
SCENARIO 3 = CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | LEVEL OF SERVICE CALCULATIONS | | | | | | | | | | | | | | |---------|--------------------------------------|----------|--------------------------------|------------------|---------|------------------------------------|---------|---------|------------|------------|---|--------|--|--| | MOVE- | # OF | | | SC | NARIO | VOLUMES | | | SCENARIO ' | V/C RATIOS | | | | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | | | | NBL | | 0 | 0 | 0 | 0 | 0 | - | _ | _ | _ | | | | | | NBT | 2 | 3200 | 678 | 6 9 1 | 849 | 862 | 0.212 | 0.216 | 0.265 | 0.269 | !
! | ĺ | | | | NBR (a) | 1 1 | 1600 | 877 | 877 | 1074 | 1074 | 0.548 * | 0.548 * | 0.671 * | 0.671 * | | | | | | SBL | 2 | 3200 | 321 | 332 | 316 | 327 | 0.100 * | 0.104 * | 0.099 * | 0.102 * | | | | | | SBT | 2 | 3200 | 1338 | 1345 | 1515 | 1522 | 0.418 | 0.420 | 0.473 | 0.476 | | | | | | SBR | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | l
I | | | | EBL | 0 | 0 | 13 | 13 | 32 | 32 | - | _ | _ | _ | | | | | | EBT | 1 | 1600 | 0 | 0 | 0 | 0 | 0.008 * | 0.008 * | 0.020 * | 0.020 * | | | | | | EBR (b) | 1 | 1600 | 10 | 10 | 33 | 33 | 0.006 | 0.006 | 0.021 | 0.021 | | | | | | WBL | 0 | 0 | 0 | 0 | 0 | 0 | _ | - | - | - | | | | | | WBT | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | | | | | | | WBR | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | | | | тот | | | | CITY UTILIZATION:
L OF SERVICE: | 0.756 | 0.760 | 0.890 | 0.893 | | | | | | NOTES: | er andreas er freihe en andere en en | | and a service of the second of | JUENAK | IO LEVE | L OF SERVICE: | С | С | D | D | and and the state of state of the state of the state of | | | | NOTES: RTOR: (a) 18% (b) 77% Printed: 02/24/11 INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: **NOVEMBER 3, 2009** TIME PERIOD: A.M. PEAK HOUR N/S STREET: STORKE ROAD HOLLISTER AVENUE E/W STREET: CONTROL TYPE: SIGNAL | | | | | TI | RAFFIC | VOLU | ME SU | MMARY | , | , | | | | |---|----|-----|-----|----------|--------|------|-------|-------|----|-----|-----|----|--| | NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND | | | | | | | | | | | | | | | VOLUMES | L | T | R | <u> </u> | T | R | L | T | R | L | T | R | | | (A) EXISTING: | 32 | 498 | 158 | 415 | 490 | 372 | 573 | 395 | 62 | 103 | 131 | 66 | | | (B) PROJECT-ADDED | 0 | 2 | 0 | 3 | 5 | 3 | 1 | 0 | 0 | 0 | 0 | 1 | | | (C) CUMULATIVE | 44 | 635 | 234 | 543 | 604 | 502 | 654 | 660 | 70 | 142 | 196 | 88 | | #### GEOMETRICS LANE GEOMETRICS NORTH BOUND LL TT R SOUTH BOUND LL TT R EAST BOUND LL TT R WEST BOUND LL TT R REF: 08AM TRAFFIC SCENARIOS SCENARIO 1 - EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 = CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | | | | LEVEL | OF SE | RVICE CALCULATIO |)NS | | | | | | |---------|-----------------------|----------|----------------------------|---|-----------------|--|------------------------|----------------------------|----------------------------------|--|---------------------------------|--| | MOVE- | # OF | | _ | SCE | NARIO V | VOLUMES | | | SCENARIO ' | V/C RATIOS | | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | | NBL | 2 | 3200 | 32 | 32 | 44 | 44 | 0.010 | 0.010 | 0.014 | 0.014 | | | | NBT | 2 | 3200 | 498 | 500 | 635 | 637 | 0.156 * | 0.156 * | 0.198 * | 0.199 * | | | | NBR (a) | 1 | 1600 | 52 | 52 | 77 | 77 | 0.033 | 0.033 | 0.048 | 0.048 | | | | SBL | 2 | 3200 | 415 | 418 | 543 | 54 6 | 0.130 * | 0.131 * | 0.170 * | 0.171 * | | 8 | | SBT | 2 | 3200 | 490 | 495 | 604 | 609 | 0.153 | 0.155 | 0.189 | 0.190 | | | | SBR (b) | 1 | 1600 | 164 | 165 | 221 | 222 | 0.103 | 0.103 | 0.138 | 0.139 | | | | EBL | 2 | 3200 | 573 | 574 | 654 | 655 | 0.179 * | 0.179 * | 0.204 * | 0.205 * | | | | EBT | 2 | 3200 | 3 9 5 | 395 | 660 | 660 | 0.123 | 0.123 | 0.206 | 0.206 | | | | EBR (c) | 1 | 1600 | 24 | 24 | 27 | 27 | 0.015 | 0.015 | 0.017 | 0.017 | | | | WBL. | 2 | 3200 | 103 | 103 | 142 | 142 | 0.032 | 0.032 | 0.044 | 0.044 | | | | WBT | 2 | 3200 | 131 | 131 | 196 | 196 | 0.041 * | 0.041 * | 0.061 * | 0.061 * | | | | WBR (d) | 1 | 1600 | 21 | 21 | 28 | 28 | 0.013 | 0.013 | 0.018 | 0.018 | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | | тот | | | | ITY UTILIZATION:
OF SERVICE: | 0.606
B | 0.607
B | 0.733
C | 0.736
C | i | | | NOTES | وقوم معورون ما العامر | | Esercición de la lación de | a di na di na mana di Nasa N | *************** | e a la companya de l | Construction as 1000m. | April 1910 mark the second | na na mana ang Kitika na Palana. | Annual Communication of the Co | and o'dented by a second of the | and the second s | **NOTES:** RTOR: (a) 67% (b) 56% (c) 61% (d) 68% Printed: 02/16/11 INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: **NOVEMBER 3, 2009** TIME PERIOD: P.M. PEAK HOUR N/S STREET: STORKE ROAD E/W STREET: CONTROL TYPE: **HOLLISTER AVENUE** SIGNAL | | | | | | T | RAFFIC | VOLU | ME SU | MARY | • | | | | |---|---------------|-----|-----|-----|-----|--------|-------------|-------|------|-----|-----|-----|-----| | NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND | | | | | | | | | | | | | | | VO | LUMES | L | T | R | L | T | R | L | T | R | L | T | R | | (A) | EXISTING: | 76 | 625 | 144 | 139 | 531 | 75 9 | 659 | 340 | 58 | 226 | 484 | 464 | | (B) | PROJECT-ADDED | 0 | 5 | 0 | 2 | 3 | 2 | 4 | 0 | 0 | 0 | 0 | 4 | | (C) | CUMULATIVE | 147 | 904 |
253 | 196 | 632 | 769 | 704 | 441 | 111 | 570 | 816 | 551 | | | | GEOME | FRICS | | | |-----------------|-------------|-------------|------------|------------|--| | | NORTH BOUND | SOUTH BOUND | EAST BOUND | WEST BOUND | | | LANE GEOMETRICS | LL TT R | LL TT R | LL TT R | LL TT R | | # TRAFFIC SCENARIOS SCENARIO 1 = EXISTING VOLUMES (A) SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B) SCENARIO 3 = CUMULATIVE (C) SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C) | | | | | LEVEL | . OF SE | RVICE CALCULATIO | NS | | | |
 | |---------|-------|----------|-----|-------|---------|-------------------|------------|------------|------------|------------|------| | MOVE- | # OF | | | SCE | NARIO V | OLUMES | | | SCENARIO Y | V/C RATIOS | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
 | | NBL | 2 | 3200 | 76 | 76 | 147 | 147 | 0.024 | 0.024 | 0.046 | 0.046 | | | NBT | 2 | 3200 | 625 | 630 | 904 | 909 | 0.195 * | 0.197 * | 0.283 * | 0.284 * | | | NBR (a) | 1 | 1600 | 52 | 52 | 91 | 91 | 0.033 | 0.033 | 0.057 | 0.057 | | | SBL | 2 | 3200 | 139 | 141 | 196 | 198 | 0.043 * | 0.044 * | 0.061 * | 0.062 * | | | SBT | 2 | 3200 | 531 | 534 | 632 | 635 | 0.166 | 0.167 | 0.198 | 0.198 | | | SBR (b) | 1 | 1600 | 311 | 312 | 315 | 316 | 0.194 | 0.195 | 0.197 | 0.198 | | | EBL. | 2 | 3200 | 659 | 663 | 704 | 708 | 0.206 * | 0.207 * | 0.220 * | 0.221 * | | | EBT | 2 | 3200 | 340 | 340 | 441 | 441 | 0.106 | 0.106 | 0.138 | 0.138 | | | EBR (c) | 1 | 1600 | 20 | 20 | 38 | 38 | 0.013 | 0.013 | 0.024 | 0.024 | | | WBL. | 2 | 3200 | 226 | 226 | 570 | 570 | 0.071 | 0.071 | 0.178 | 0.178 | | | WBT | 2 | 3200 | 484 | 484 | 816 | 816 | 0.151 | 0.151 | 0.255 * | 0.255 * | | | WBR (d) | 1 | 1600 | 311 | 314 | 369 | 372 | 0.194 * | 0.196 * | 0.231 | 0.233 | | | | , | | | | | LOST TIME: | 0.100 * | 0.100 * | 0.100 * | 0.100 * | | | | | то | | | | CITY UTILIZATION: | 0.738
C | 0.744
C | 0.919
E | 0.922
E | | RTOR: (a) 64% (b) 59% (c) 66% (d) 33% Printed: 02/16/11 REF: 08PM INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: TIME PERIOD: A.M. PEAK HOUR N/S STREET: E/W STREET: CATHEDRAL OAKS CALLE REAL CONTROL TYPE: SIGNAL | With Modified Cathedral | Oaks-Hollister Avenue Interchange | |-------------------------|-----------------------------------| | | | REF: A_AM | | TRAFFIC VOLUME SUMMARY | | | | | | | | | | | | | | |---|------------------------|-----|----|--|-----|----|----|----|----|-----|----|---|--|--| | NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND | | | | | | | | | | | | | | | | VOLUMES | L | T | R | <u> L </u> | . T | R | L | Т | R | L | Т | R | | | | (A) CUMULATIVE: | 72 | 112 | 80 | 2 | 163 | 42 | 50 | 24 | 96 | 263 | 74 | 2 | | | | (B) PROJECT-ADDEI | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | GEOME | TRICS | | | |-----------------|---------------------|--------------------|-------------------|--------------------|--| | LANE GEOMETRICS | NORTH BOUND
L TR | SOUTH BOUND
LTR | EAST BOUND
LTR | WEST BOUND
L TR | | #### TRAFFIC SCENARIOS SCENARIO 1 = CUMULATIVE VOLUMES (A) SCENARIO 2 = CUMULATIVE + PROJECT VOLUMES(A+B) | | | | | LEVEL | OF SERV | ICE CALCULATION | ONS | | | | | | |---------|------------------------------|---|-------------------------|------------------------------------|----------------------------|--|--|---|--|---------------------------------|--|-----------------| | MOVE- | # OF | | | SCEN | ARIO VO | LUMES | | | SCENARIO | V/C RATIOS | | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | • | | | NBL | 1 1 | 1600 | 72 | 72 | | | 0.045 * | 0.045 * | | | | |
 NBT | 1 1 | 1600 | 112 | 112 | | | 0.120 | 0.120 | | | | | | NBR (a) | 0 | 0 | 80 | 80 | | | - | - | | | | | | SBL | 0 | 0 | 2 | 2 | | | _ | _ | | | | | | SBT |] 1 | 1600 | 163 | 164 | | | 0.129 * | 0.131 * | | | | | | SBR (b) | 0 | 0 | 42 | 44 | | | - | - | | | | | | EBL | 0 | .0 | 50 | 50 | | | | _ | | | | | | EBT | 1 1 | 1600 | 24 | 24 | | | 0.106 * | 0.106 * | | | | | | EBR (c) | 0 | 0 | 96 | 96 | | | - | - | | | | | | WBL | 1 1 | 1600 | 263 | 263 | | | 0.164 * | 0.164 * | | | ļ | | | WBT | 1 1 | 1600 | 74 | 74 | | | 0.048 | 0.048 | | | | | | WBR (d) | 0 | 0 | 2 | 2 | | | - | - | | | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | | | | | | | Y UTILIZATION:
F SERVICE: | 0.544
A | 0.546
A | | | | | | | | | | | NOTES. | and the London Constitutions | And the transfer of the second | gerlandski kannen er en | Carrier and Control of the Control | THE PERSON NAMED IN COLUMN | en e | t to the control of t | The second reaction and the second second | Parameter and the control of con | EX THE CASE OF THE PARTY OF THE | Not the second s | TOTAL PROPERTY. | NOTES: Printed: 02/16/11 INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: TIME PERIOD: P.M. PEAK HOUR N/S STREET: CATHEDRAL OAKS E/W STREET: CALLE REAL With Modified Cathedral Oaks-Hollister Avenue Interchange CONTROL TYPE: SIGNAL | | | | | T | RAFFIC | VOL | UME | SUM | MARY | | | | | |-------------------|-----|-------|-----|------|--------|-----|------|-----|------|-----|----------|----|------| | | NOR | TH BO | UND | SOU1 | TH BO | JND | EAST | BOL | IND | W | EST BOUN | ID | | | VOLUMES | L | T | R | L | T | R | L | T | R | L | Т | R |
 | | (A) CUMULATIVE: | 241 | 91 | 85 | 1 | 91 | 47 | 8 | 9 | 43 | 261 | 91 | 0 | | | (B) PROJECT-ADDED | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | GEON | METRICS | | | |-----------------|---------------------|--------------------|-------------------|--------------------|--| | LANE GEOMETRICS | NORTH BOUND
L TR | SOUTH BOUND
LTR | EAST BOUND
LTR | WEST BOUND
L TR | | TRAFFIC SCENARIOS SCENARIO 1 ~ CUMULATIVE VOLUMES (A) SCENARIO 2 - CUMULATIVE + PROJECT VOLUMES(A+B) | | | | | LEVEL | OF SERVICE CALCU | JLATIONS | | | | | | |---------|--|--|--|--|---------------------|--|---------|--
--|-------------------------------------|-----------------| | MOVE- | # OF | | | SCENAR | IO VOLUMES | | | SCENARI | O V/C RATIOS | | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 4 | 1 | 2 | 3 | 4 | | | | NBL. | 1 | 1600 | 241 | 241 | | 0.151 * | 0.151 * | | | | | | NBT | 1 | 1600 | 91 | 93 | | 0.110 | 0.111 | | | 1 | | | NBR (a) | 0 | 0 | 85 | 85 | | - | - | | | | | | SBL | 0 | 0 | 1 | 1 | | - | _ | | | | | | SBT | 1 | 1600 | 91 | 92 | | 0.087 * | 0.088 * | | | | | | SBR (b) | 0 | 0 | 47 | 48 | | - | - | | | | | | EBL | 0 | 0 | 8 | 8 | | | - | | ļ | | | | EBT | 1 1 | 1600 | 9 | 9 | | 0.038 * | 0.038 * | | | | | | EBR (c) | 0 | 0 | 43 | 43 | | - | - | | | ĺ | | | WBL | 1 | 1600 | 261 | 261 | | 0.163 * | 0.163 * | | | | | | WBT | 1 | 1600 | 91 | 91 | | 0.057 | 0.057 | | | | | | WBR (d) | 0 | 0 | 0 | 0 | | - | - | | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | | | | | | | | TOTAL | LINTERSEC | TION CAI | PACITY UTILIZATION: | 0.539 | 0.540 | | | | | | | | | SCEI | NARIO LE | VEL OF SERVICE: | A | A | | | | | | NOTES: | and remainded to the second of | The second secon | e manual transportation and the street | teritoria de la como d | | i and the second of the second | | elektris i territoria engres transcer. | The second secon | i Si i di denti can a consumo e con | eg so e-conserv | NOTES: Printed: 02/16/11 REF: A_PM INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: TIME PERIOD: N/S STREET: A.M. PEAK HOUR CATHEDRAL OAKS E/W STREET: U.S. 101 SB RAMPS CONTROL TYPE: SIGNAL | | | | | | TR/ | AFFIC V | /OLUM | E SUM | MARY | | | | | | |------------|------------------------------------|---|----------|----------|----------|----------|-------|---------|--------|----------|----|-----------|--------|------| | | NORTH BOUND SOUTH BOUND EAST BOUND | | | | | | | | | 4D | WF | EST BOUNI | D | | | VOL | VOLUMES | | T. | R | L | T | R | L | T | R | L | T | R |
 | | (A)
(B) | CUMULATIVE:
PROJECT-ADDED | 0 | 198
0 | 197
0 | 259
1 | 261
0 | 0 | 66
0 | 1
0 | 185
0 | 0 | 0 | 0
0 | | With Modified Cathedral Oaks-Hollister Avenue Interchange | | | GEOMETR | RICS | | | |-----------------|-------------|-------------|------------|------------|--| | | NORTH BOUND | SOUTH BOUND | EAST BOUND | WEST BOUND | | | LANE GEOMETRICS | TR | LT | L TR | | | # TRAFFIC SCENARIOS SCENARIO 1 = CUMULATIVE VOLUMES (A) SCENARIO 2 = CUMULATIVE + PROJECT VOLUMES(A + B) | | | | | LEVEL C | F SERVI | CE CALCULATION | NS | | | | | | |---------|--|----------|-----|-------------|----------|----------------|---------|---------|----------|------------|--|--| | MOVE- | # OF | | _ | SCEN | IARIO VO | DLUMES | ě | | SCENARIO | V/C RATIOS | | | | MENTS | LANES | CAPACITY | 11 | 2 | 3 | 4 | 11 | 2 | 3 | 4 | | | | NBL | 0 | 0 | 0 | 0 | | | | | | | | | | NBT | 1 | 1600 | 198 | 198 | | | 0.247 * | 0.247 * | | | | | | NBR (a) | 0 | 0 | 197 | 19 7 | | | - | - | | ļ | | | | SBL | 1 | 1600 | 259 | 260 | | | 0.162 * | 0.163 * | | | | | | SBT | 1 | 1600 | 261 | 261 | | | 0.163 | 0.163 | | | | | | SBR (b) | 0 | 0 | 0 | 0 | | | - | - | | | | | | EBL | 1 | 1600 | 66 | 66 | | | 0.041 | 0.041 | | | | | | EBT | 1 | 1600 | 1 | 1 | | | 0.116 * | 0.116 * | | İ | | | | EBR (c) | 0 | 0 | 185 | 185 | | | - | • | | | | | | WBL | 0 | 0 | 0 | o | | | - | - | | | | | | WBT | 0 | 0 | 0 | 0 | | | - | - | | | | | | WBR (d) | 0 | 0 | 0 | 0 | | | - | - | | | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | | | | | | | TOTAL INTERSECTION CAPACITY UTILIZATION SCENARIO LEVEL OF SERVICE: | | | | | | | | | | | | NOTES: Printed: 02/16/11 REF: B_AM INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: TIME PERIOD: P.M. PEAK HOUR N/S STREET: **CATHEDRAL OAKS U.S. 101 SB RAMPS** E/W STREET: CONTROL TYPE: SIGNAL With Modified Cathedral Oaks-Hollister Avenue Interchange | | | | | | TR | AFFIC V | OLUM | E SUM | MARY | | | | | | |-----|---------------|----|----------|-----|-----|---------|------|-------|-------|----|------------|---|---|--| | | | NO | RTH BO | UND | SOL | JTH BO | UND | EAS | T BOU | ND | WEST BOUND | | | | | VOL | JMES | L | <u>T</u> | R | L | | R | L | Ţ | R | L | Ţ | R | | | (A) | CUMULATIVE: | 0 | 328 | 263 | 88 | 307 | 0 | 27 | 3 | 92 | 0 | 0 | 0 | | | (B) | PROJECT-ADDED | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | | GEOMETRICS **NORTH BOUND** SOUTH BOUND **EAST BOUND WEST BOUND** LANE GEOMETRICS TR LT L TR TRAFFIC SCENARIOS SCENARIO 1 - CUMULATIVE VOLUMES (A) SCENARIO 2 = CUMULATIVE + PROJECT VOLUMES(A+B) | | | | | | LEVEL O | F SERVI | CE CALCULATION | NS | | | | | | |------------|---------------------|--|-----------|-------------------------------|--|-------------
--|-------------------------------------|--|------------------------|---|------------------------------------|--------------------------| | MOVE- | | # OF | | | SCEN | ARIO VO | LUMES | | | SCENARIO | V/C RATIOS | | | | MENTS | | LANES | CAPACITY | 11_ | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | | NBL | | 0 | 0 | 0 | 0 | | | _ | - | | 1 | | | | NBT | | 1 | 1600 | 328 | 328 | | | 0.369 * | 0.369 * | | | | | | NBR | (a) | 0 | 0 | 263 | 263 | | | - | - | | | | | | SBL
SBT | | 1 1 | 1600 | 88 | 89 | | | 0.055 * | 0.056 * | | | | | | SBR | (b) | 0 | 1600
0 | 307
0 | 307
0 | | | 0.192 | 0.192
- | | | | | | EBL | | 1 | 1600 | 27 | 29 | | | 0.017 | 0.018 | | | | | | EBT | | 1 | 1600 | 3 | . 3 | | | 0.059 * | 0.059 * | | | | | | EBR | (c) | 0 | 0 | 92 | 92 | | | - | - | | | | | | WBL | | 0 | 0 | 0 | 0 | | | - | - | | | | | | WBT | | 0 | 0 | 0 | 0 | | | - | - | | | | | | WBR | (d) | 0 | 0 | 0 | 0 | | | - | - | | | | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | | | | | | | | | тот | Y UTILIZATION:
OF SERVICE: | 0.583
A | 0.584
A | | | | | | | | | NOTES: | Paris de la company | the experience of the second distributions | | Die sesso ossernas | an particular de la companya c | ×10.000.000 | and the second of o | · How control of the section of the | COLUMN TO THE PARTY OF PART | Myselfican's mass-mark | Miles of the Control | a product also also are a library. | Eleganisti maga mengenan | Printed: 02/16/11 REF: B_PM INTERSECTION CAPACITY UTILIZATION WORKSHEET **COUNT DATE:** TIME PERIOD: A.M. PEAK HOUR HOLLISTER AVENUE N/S STREET: CATHEDRAL OAKS E/W STREET: CONTROL TYPE: SIGNAL With Modified Cathedral Oaks-Hollister Avenue Interchange | | | | | TR/ | AFFIC Y | VOLUM | E SUM | MARY | | | | | | |------------------|----|--------|-----|-----|---------|-------|-------|-------|----|----|---------|-----|--| | | NC | RTH BC | UND | SOU | тн во | UND | EAS | T BOU | ND | WE | ST BOUN | D | | | VOLUMES | L | T | R | L | T | R | L | T | R | L | T | R | | | (A) CUMULATIVE: | 0 | 0 | . 0 | 388 | 0 | 44 | 19 | 11 | 0 | 0 | 17 | 370 | | | (B) PROJECT-ADDE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | GEOMETRICS NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND LANE GEOMETRICS L R LT T R TRAFFIC SCENARIOS SCENARIO 1 = CUMULATIVE VOLUMES (A) SCENARIO 2 = CUMULATIVE + PROJECT VOLUMES(A+B) | | | | | | LEVEL C |)F SERVI | CE CALCULATION | IS | | | | | |-------|-----|-------|----------|-----|---------|----------|--------------------------------|------------|------------|------------|------------|------| | MOVE- | | # OF | | _ | SCEN | ARIO VO | DLUMES | _ | | SCENARIO ' | V/C RATIOS | | | MENTS | | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
 | | NBL | | 0 | 0 | 0 | 0 | | | - | | | | | | NBT | | 0 | 0 | 0 | 0 | | | - | | ĺ | | | | NBR | (a) | 0 | 0 | 0 | 0 | | | - | - | | | | | SBL | | 1 | 1600 | 388 | 388 | | | 0.243 * | 0.243 * | | | | | SBT | | 0 | 0 | 0 | 0 | | | - | - | | | | | SBR | (b) | 1 | 1600 | 44 | 44 | | | 0.028 | 0.028 | | | | | EBL | | 0 | 0 | 19 | 19 | | | - | - | | | | | EBT | | 1 | 1600 | 11 | 11 | | | 0.019 | 0.019 | | | | | EBR | (c) | 0 | 0 | 0 | 0 | | | - | - | | | | | WBL | | 0 | 0 | 0 | 0 | | | - | - | | | | | WBT | | 1 1 | 1600 | 17 | 17 | | | 0.011 | 0.011 | | | | | WBR | (d) | 1 | 1600 | 370 | 370 | | | 0.231 * | 0.231 * | | | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | | | | | | | | тот | | | | TY UTILIZATION:
OF SERVICE: | 0.574
A | 0.574
A | | | | NOTES: Printed: 02/18/11 REF: C_AM INTERSECTION CAPACITY UTILIZATION WORKSHEET COUNT DATE: TIME PERIOD: P.M. PEAK HOUR With Modified Cathedral Oaks-Hollister Avenue Interchange N/S STREET: CATHEDRAL OAKS E/W STREET: HOLLISTER AVENUE CONTROL TYPE: SIGNAL | | | | | TE | RAFFIC | VOLU | ME SU | MARY | , | | | | _ | |-------------------|-----|-------|-----|-----|--------|------|-------|-------|----|---
---------|-----|---| | | NOR | TH BO | UND | SOU | TH BO | UND | EAS | T BOU | ۷D | W | ST BOUN | D | | | VOLUMES | L | T | R | L | T | R | L | T | R | L | Т | R | | | (A) CUMULATIVE: | 0 | 0 | 0 | 370 | 0 | 16 | 40 | 39 | 0 | 0 | 22 | 536 | | | (B) PROJECT-ADDED | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | GEOMET | RICS | | | |-----------------|-------------|--------------------|------------------|-------------------|--| | LANE GEOMETRICS | NORTH BOUND | SOUTH BOUND
L R | EAST BOUND
LT | WEST BOUND
T R | | #### TRAFFIC SCENARIOS SCENARIO 1 = CUMULATIVE VOLUMES (A) SCENARIO 2 = CUMULATIVE + PROJECT VOLUMES(A+B) | | 7 | | | LEVEL | OF SERV | ICE CALCULATION | ONS | | | | | | |---------|------------------------------|----------|--|----------------------------|--|---|------------|---------------------------------|---|-------------------------------|---------------------------------|--------------------| | MOVE- | # OF | | | SCEN | ARIO VO | LUMES | | - | SCENARIO ' | V/C RATIOS | } | | | MENTS | LANES | CAPACITY | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | • | • | | NBL | 0 | 0 | o | 0 | | | | | | | | | | NBT | 0 | 0 | 0 | 0 | | | 1. | ١. | | | | | | NBR (a) | 0 | 0 | 0 | 0 | | | - | - | | | İ | | | SBL | 1 1 | 1600 | 3 <i>7</i> 0 | 370 | | | 0.231 * | 0.231 * | | | | | | SBT | 0 | 0 | 0 | 0 | | | - | - | | | | | | SBR (b) | 1 | 1600 | 16 | 16 | | | 0.010 | 0.010 | | | | | | EBL | 0 | o | 40 | 40 | | | _ | _ | | | | | | EBT | 1 1 | 1600 | 39 | 39 | | | 0.049 | 0.049 | | | l | | | EBR (c) | 0 | 0 | 0 | 0 | | | - | - | | | | | | WBL | 0 | 0 | 0 | 0 | | | _ | _ | | | ļ | | | WBT | 1 | 1600 | 22 | 22 | | | 0.014 | 0.014 | | | | | | WBR (d) | 1 | 1600 | 536 | 536 | | | 0.335 * | 0.335 * | | | | | | | | | | | | LOST TIME: | 0.100 * | 0.100 * | | | | | | | | тота | | | | / UTILIZATION:
F SERVICE: | 0.666
B | 0.666
B | | | | | | NOTES: | Talkantan jaga sadi Villanga | | A STATE OF THE STA | er es de esta <u>a p</u> e | e en | Madaman and a sure and a substitution of the sure | | Sententina (200 dilikinski mari | nakking dalam siya menjaran kanasaksa s | a to design the second second | an Collection and an except and | nasting plant only | NOTES: Printed: 02/18/11 REF: C_PM **DRIVEWAY LEVEL OF SERVICE CALCULATION WORKSHEETS** | | TV | O-WAY STO | P CONTR | OL SU | MMARY | | | | |-------------------------------|-----------------|------------|----------|------------|--------------|------------|----------|--------------| | General Informati | | | | nforma | | | | | | Analyst | DLD | | Inters | | | CATHE | DRAL OAI | KS/EAST | | Agency/Co. | ATE | | l | | | DRIVEV | | | | Date Performed | 2/23/201 | 11 | Jurisd | | | GOLETA | | | | Analysis Time Period | AM PEA | | Analys | sis Year | | CUMUL | ATIVE+PF | ROJECT | | Project Description | | | | | | | | | | East/West Street: CA | | S | | ********** | reet: EAST | DRIVEWA | Υ | | | Intersection Orientation | | | Study | Period (h | rs): 0.25 | | | | | Vehicle Volumes a | and Adjustm | ents | | | | | | | | Major Street | | Eastbound | | | | Westbo | und | | | Movement | 111 | 2 | 3 | | 4 | 5 | | 6 | | | LL | Т | R | | L | Т | | R | | Volume (veh/h) | 0 | 467 | | | | 172 | | 5 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR (veh/h) | 0 | 467 | 0 | | 0 | 172 | | 5 | | Percent Heavy Vehicles | 3 0 | | | | 0 | | | | | Median Type | | | | Undivid | led | | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 1 | 1 | 0 | | 0 | 1 | | 0 | | Configuration | L | T | | | | † <u>-</u> | | TR | | Upstream Signal | | 0 | | | | 0 | | | | Minor Street | | Northbound | | | | Southbo | ınd | | | Movement | 7 | 8 | 9 | | 10 | 11 | ana | 12 | | | L | Т | R | | Ĺ | T | | R | | Volume (veh/h) | | <u> </u> | | | 16 | <u> </u> | | 1 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 0 | | 16 | 0 | | 1 | | Percent Heavy Vehicles | 0 | 0 | 0 | | 0 | 0 | | 0 | | Percent Grade (%) | | 0 | <u> </u> | | | 0 | | <u> </u> | | Flared Approach | | N | 1 | | ···· | l v | | | | Storage | | 0 | | | | 0 | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 0 | 0 | 0 | | 0 | 0 | | 0 | | Configuration | | | | | | LR | | | | Delay, Queue Length, a | and Level of Se | rvice | | | | | | | | Approach | Eastbound | Westbound | N | lorthbour | nd | l s | outhboun | d | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | L | | | | | | LR | | | v (veh/h) | 0 | - | | | | | 17 | | | C (m) (veh/h) | 1411 | | | | | | 455 | | | v/c | 0.00 | | | | | | 0.04 | - | | 95% queue length | 0.00 | | | | | | 0.04 | | | Control Delay (s/veh) | 7.6 | | | | | | | | | LOS | | | | | | | 13.2 | | | | <u> </u> | | | | | | В | | | Approach Delay (s/veh) | | | | | | | 13.2 | | | Approach LOS | | <u></u> | | | | | В | | HCS+TM Version 5.4 Generated: 2/23/2011 1:05 PM | | 71/ | 10 144 V 070 | | | | | | | |---|----------------|---------------|--|--------------|---------------------------------------|-----------------|------------------|--| | General Informati | | NO-WAY STO | at arte year him. Elympan and a second | | | | | | | | | |)
Site | Inform | lation | OATUE | 2044 04 | ************************************** | | Analyst | DLD | | Inters | ection | | DRIVEV | | KS/EAST | | Agency/Co. | ATE | | Juriso | diction | | GOLETA | | | | Date Performed | 2/23/20 | | 1 | sis Year | r | | | ROJECT | | Analysis Time Period | PM PEA | 4 <i>K</i> | | | | | | | | Project Description | TUEDDAL OAK | <u> </u> | 151 11 | - " 0 | | | | | | East/West Street: CA Intersection Orientation | | S | | | treet: EAST | DRIVEWA | Υ | | | | | | Study | Periou (| (hrs): 0.25 | ************ | | | | Vehicle Volumes a | and Adjustm | | | 1 | | | | | | Major Street Movement | 1 | Eastbound | 1 2 | | | Westbo | und | | | Movement | L | 2
 | 3
R | | 4
L | <u>5</u>
 T | | <u>6</u> | | Volume (veh/h) | 2 | 202 | <u> </u> | | L | 271 | | R
18 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 | , + | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR | | | | ' | · · · · · · · · · · · · · · · · · · · | | | | | (veh/h) | | 202 | 0 | | 0 | 271 | | 18 | | Percent Heavy Vehicles | s 0 | | | | 0 | | | | | Median Type | | | | Undivi | ided | | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 1 | 1 | 0 | | 0 | 1 | | 0 | | Configuration | L | Τ | | | | | | TR | | Upstream Signal | | 0 | | | | 0 | | | | Minor Street | | Northbound | | | | Southbo | und | | | Movement | 7 | 8 | 9 | | 10 | 11 | | 12 | | | L | T | R | | L | Т | | R | | Volume (veh/h) | | | | | 10 | | | 1 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 | <u>'</u> | 1.00 | 1.00 | | 1.00 | | Hourly Flow Rate, HFR (veh/h) | 0 | O | 0 | | 10 | 0 | | 1 | | Percent Heavy Vehicles | 0 | 0 | 0 | | 0 | 0 | | 0 | | Percent Grade (%) | | 0 | | | | 0 | | | | Flared Approach | | N | 1 | | | l v | 1 | | | Storage | | 0 | | | | 0 | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 0 | 0 | 0 | | 0 | 0 | | 0 | | Configuration | | | - | | U | LR | | | | Delay, Queue Length, | and Lavel of S | anvice | | | | <u> </u> | | | | Approach | Eastbound | Westbound | <u> </u> | Northbou | ınd | | - د د ها مالاد د | <u> </u> | | Movement | 1 | 4 | 7 | 8 | | | outhboun | | | Lane Configuration | L | 7 | | - 0 | 9 | 10 | 11 | 12 | | v (veh/h) | 2 | | | | | | LR | · | | C (m) (veh/h) | 1284 | | | | | | 11 | | | v/c | 0.00 | <u> </u> | | | | | 558 | | | | | | | | | | 0.02 | | | 95% queue length | 0.00 | | | | | | 0.06 | | | Control Delay (s/veh) | 7.8 | | | | | | 11.6 | _ | | LOS | Α | | | | | | В | | | Approach Delay (s/veh) | | . | | | | | 11.6 | | | Approach LOS | | | | | | | В | |
HCS+TM Version 5.4 Generated: 2/23/2011 1:05 PM | | TV | O-WAY STOR | CONTR | OL S | UM | MARY | | | | | |--|--|-------------------|------------------|--------|--------------|----------|--|-------------|------|-----| | General Informatio | | | Site | | | | | | | | | Analyst Agency/Co. Date Performed Analysis Time Period | DLD
ATE
2/23/201
AM PEA | | Inters
Jurisd | ection | | | CATHED
DRIVEW
GOLETA
CUMULA | AY
I | | | | Project Description | | | | | | | | | | | | East/West Street: CA? Intersection Orientation | | S | | | | et: WEST | DRIVEWA | Υ | | | | | | • | Study | Penoa | (nrs | s): 0.25 | | | | | | Vehicle Volumes a
Major Street | <u> </u> | ents
Eastbound | | | l | | Westbou | ınd | | | | Movement | 1 | 2 | 3 | | | 4 | 5 | ii iu | | 6 | | | <u> </u> | T | Ř | | | L | Ť | | | R | | Volume (veh/h) | 1 | 452 | | | | | 168 | | | 5 | | Peak-Hour Factor, PHF | | 1.00 | 1.00 |) | | 1.00 | 1.00 | | 1 | .00 | | Hourly Flow Rate, HFR (veh/h) | 1 | 452 | 0 | | | 0 | 168 | | | 5 | | Percent Heavy Vehicles | 5 0 | | | | | 0 | | | | | | Median Type | | 1 | | Undi | vide | d d | | | | | | RT Channelized | | | T 0 | | | | | | | 0 | | Lanes | 1 | 1 | 0 | | | 0 | 1 | $\neg \neg$ | | 1 | | Configuration | L | T | | | | | T | <u> </u> | | R | | Upstream Signal | | 0 | | | | | 0 | | | | | Minor Street | | Northbound | | | | | Southbou | und | | | | Movement | 7 | 8 | 9 | | | 10 | 11 | | | 12 | | | L | Т | R | | | L | Т | | | R | | Volume (veh/h) | | | | | | 15 | | | | 2 | | Peak-Hour Factor, PHF | 1.00 | 1.00 | 1.00 | | | 1.00 | 1.00 | | 1 | .00 | | Hourly Flow Rate, HFR (veh/h) | О | 0 | 0 | | | 15 | 0 | | | 2 | | Percent Heavy Vehicles | 0 | 0 | 0 | | | 0 | 0 | | | 0 | | Percent Grade (%) | | 0 | | | | | 0 | | | | | Flared Approach | | N | | | | | N | | | | | Storage | | 0 | | | | | 0 | | | | | RT Channelized | | - | 0 | | | | | | | 0 | | Lanes | 0 | 0 | 0 | | | 0 | 0 | | | 0 | | Configuration | | | | | | | LR | | | | | Delay, Queue Length, | and Level of So | ervice | | | | | | | | | | Approach | Eastbound | Westbound | l | Vorthb | ound | | S | outhb | ound | | | Movement | 1 | 4 | 7 | 8 | | 9 | 10 | 1 | | 12 | | Lane Configuration | L | | | | | | | LF | | 7 | | v (veh/h) | 1 | | | | | | | 17 | , | | | C (m) (veh/h) | 1416 | | | | | | | 48 | | | | v/c | 0.00 | | | | | | | 0.0 | | | | 95% queue length | 0.00 | | | | | | | 0.1 | | | | Control Delay (s/veh) | 7.5 | | | | | | | 12. | | | | LOS | 7.5
A | | | | | | | 12.
B | | | | Approach Delay (s/veh) | | | <u></u> | | | | | 12.8 | | | | | | | | | | | ·· · · · · · · · · · · · · · · · · · · | | , | | | Approach LOS | | | | | | | | В | | | Generated: 2/23/2011 1:06 PM | | VO MAY OTO | 200175 | 201.0 | | | | · · · · · · · · · · · · · · · · · · · | |-----------------|--|--|---|--------------|---------|----------|---------------------------------------| | | VO-WAY STOR | Transition would destroy the state of st | | | Y | | | | | | | 2-3-0-10-10-10-10-10-10-10-10-10-10-10-10-1 | renem | CATHE | DRAL OA | KSANEST | | | | Inters | ection | | | | NO/WES I | | | 4.4 | Juriso | diction | | | | | | | | Analy | sis Yea | ar | | | ROJECT | | PIVI PEA | i^ | | | | | | | | ELEDDAL GAL | | 10.1 | | | | | | | | <u>S</u> | | | | | IY . | ********** | | | | Joiddy | renou | (1118). 0.2 | 3 | | | | | | | | | Westho | und | | | 1 | | 3 | | 4 | | unu | 6 | | | T | | | | | | R | | 2 | 194 | | | - | | | 17 | | 1.00 | 1.00 | 1.00 |) | 1.00 | | | 1.00 | | 2 | 194 | 0 | | 0 | 255 | | 17 | | 0 | | | | 0 | | | | | | | | Undi | /ided | | | | | | | 0 | | | | ŀ | 0 | | 1 | 1 | 0 | | 0 | 1 | | 0 | | L | Τ | | | | | | TR | | | 0 | | | | . 0 | | | | | Northbound | | | | Southbo | und | | | 7 | 8 | 9 | | 10 | 11 | | 12 | | <u> </u> | Т | R | | L | Т | | R | | | | | | 10 | | | 1 | | 1.00 | 1.00 | 1.00 |) | 1.00 | 1.00 | | 1.00 | | 0 | 0 | 0 | | 10 | 0 | | 1 | | 0 | 0 | 0 | | 0 | 0 | | 0 | | | 0 | | | | 0 | | | | | N | | | | N | | | | | 0 | | | | 0 | | | | | | 0 | | | | | 0 | | 0 | 0 | 0 | | 0 | 0 | | 0 | | | | | | | LR | | | | ind Level of Se | ervice | | | | | | | | Eastbound | Westbound | 1 | Vorthbo | ound | 8 | outhboun | d | | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | L | | | | | | LR | | | 2 | | | | | | 11 | | | 1303 | | | | | | 576 | | | 0.00 | | | | | | 0.02 | | | 0.00 | | | | | | 0.06 | | | 7.8 | | | | | | <u> </u> | 1 | | Α | | | | | | В | | | | | | | | | | | | | | | | | | 11.4 | | | | DLD ATE 2/23/207 PM PEA THEDRAL OAK East-West Ind Adjustm 1 L 2 1.00 2 10 11 L 7 L 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | DLD ATE 2/23/2011 PM PEAK THEDRAL OAKS East-West Comparison | DLD | DLD | DLD | DLD | DLD | HCS+TM Version 5.4 Generated: 2/23/2011 1:07 PM | | ÷ | | | | | | |---------|---------|----------|-----------|--------------|-------------|------------| s | TDAFFIC | | | | | | | | IKAFFIC | CONTROL | AND LAN | E GEOMETR | IES - CATHE | DRAL OAKS I | NTERCHANGE | | TRAFFIC | CONTROL | AND LANI | E GEOMETR | IES - CATHE | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | AND LANI | E GEOMETR | SIES - CATHE | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | AND LANI | E GEOMETR | RIES - CATHE | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | AND LANI | E GEOMETR | RIES - CATHE | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | AND LANI | E GEOMETR | RIES - CATHE | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | AND LANI | E GEOMETR | SIES - CATHE | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | | | | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | | E GEOMETR | | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | | | | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | | | | DRAL OAKS I | NTERCHANGE | | IKAFFIC | CONTROL | | | | DRAL OAKS I | NTERCHANGE | | IKAFFIC | | | | | DRAL OAKS I | NTERCHANGE | | | | | | | DRAL OAKS I | NTERCHANGE | **CITY OF GOLETA TRAFFIC MODEL FORECASTS** | Γ | | | | | | | | · | | | |--------------|--
--|--------------------------------------|---|--|--|---|---|---|---| | 1 | Winchester | Canyonius 101 KB (| 2 Cathedral C | eks/Calle Real | , US 101 NS | on-rampiCalle Real | 4 US 181 HB | M-remp | 5 Cathedral O | eksfilS 101 SB Ramp | | 1 - | | 1 | | 1 | 1:// | 1 | 1. | 1 | ₩ | ı | | | = | US 181 NB of | 3 | Calle Rezi | Ì | Calle Real | | 1 0 | - | US 101 SB
Remps | | | 4 1 %
(20) (20)
(20) (20) | A 119 (200) | 7 to (5) | £2(0) | 888 | | 7 1:8 (174)
V 0 (9)
V 0 (9) | 3 b | 7 7 7 7 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | A_9(0) | | | 525 | 233 (265) | 3 4 2 | 74(91) | 200 | ← 53 (221) | 112 | ← - 0 (0) | 5 8 8 | 4 | | 11_ | <u> </u> | | - 4 > | | 1 2 1 2 | ¥ 108 (155) | 1 4 1 3 | F 0 (0) | 417 | | | 11 | 60 (64) A | | 50 (B) A | 72 (241) A
112 (30) 4
80 (88) V
Calhedral | A 100 0 | ************************************** | A (0)0 | ★↑ ≯ | 55 (28) 3 | 0 (0) \$ | | 11 | 6 (6) -A | a (t)
a (t)
a (t)
Whichester
inyon Rosu | 24 (5) | 72 (241) 7
112 (30) 112
86 (88) 12
Uhedral | | \$ 55 5 5 E | (901 | ★↑
\$88\$ | 165 (92) | 0 (0) A
196 (320) —
197 (233) —
Catheoral
Caste | | | a son A | 5 5 | To Start A | 15 E B E O | 10 (12) | N S | 2(6)-8 | Z z | icofact. | 3 7 4 5 | | | | a (4)
a (4)
b (5)
Whichester | 1 | 6 | 1 | 2 | | 0(0)
0(0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0) | | Ū | | | ************************************** | | <u> </u> | 1 | 1 | 1 5 | 1 | | 7 | | | 1 | Tronster Ave | Bacere Access/Cath | 7 Hollister Ave | #Storke | 8 Glen Anniel | Cathedraf Oaks | 9 Glen Annian | IS 101 NO Remps/Co | 10 Stonesus 11 | H SS Ramps | | | 3 | 1 | | 1 | - | | | US 101 HB | | US 101 SB | | | ~ § | Hollister Ave | ខ្នួន | Hollister Ave | 1 | Cathedral Osio | 8 _ | Ramps | ↑ 0(9)
↑ 1112 (1810)
↑ 823 (322) | Ramps | | | \ | < 21 (25) | √ T %
65 (83)
(85) (83) | ♣ 86 (553)
←— 195 (815) | 7 7 2 (18) X X X X X X X X X X X X X X X X X X X | 1 (26)
4 — 355 (222) | (52) 6(23)
V e(23) | ₹ 245 (179)
←— 426 (465) | 525 | ~ 0 (0)
← - 0 (0) | | | 215 | € 6603 | 715 | € 146 (966) | 715 | £ 73 (84) | ے آٹر
ا | € 737 (1235) | 218 | ¥ 0(0) | | - | | | | | - | 1 | | , . | | | | 1 | 25 (57) 🖈 | 1517 | 85S (708) A | 312 | 10 (3) _A | 1577 | 43 (37) _A | 1417 | 22(32) 🖈 | 1517 | | | 13 (45))
0 (8) -√ | A P E S S S S S S S S S S S S S S S S S S | 581 (441)>
70 (111) | 28 (28) × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × | 437 (216))
359 (156) | 285 (284) A
41 (41) | 4 (13)>
728 (305)> | 158 (259) \$-1
163 (279) \$-1
10 Amele
7.0 | 3(0)>
209 (144) -> | 0 (0) A
361 (856) +
1026 (1309) A
Storike Rd | | | -13 4 | 1 | 1041113 | ₹88 ₹ | | 8 + 8 K | 120001.2 | 8825 | min. A | # 8 # | | Ì | | " | 1 | | I | ð | • | 159 (289) A
163 (277) —
51 (222) A
Gen Annie
Rd | | ¥ & | | \vdash | Calle Realist | Iwood Station | Los Carnema | RJS 101 NB Ramps | I os Cornero | US 101 SB Ramps | Hegitistas A | Marketplace Dr | Hollister Ave | Codona Dr | | 11 | | 1 | 12 LUS CALINATOR | f | 13 205 CM MATE | i | 14 HOLISTER AVE | WIED KENDINGS DI | 15 HOUSEN AVE | CONTONIO | | Г | | | | US 101 NB | | US 161 SB | | | |] [| | | e 2 | Calle Resi
44 (125) | £ 8 | Ramps
4_62 (58) | 2 3 | Ramps
< 0 (0) | S = \$ | Hollister Ave | 8 | Hollister Ave
19 (34) | | | \$ 5 5 E | ← 12J (258) | E 2 2 2 | < 5(1) | 28 E | ← 6 (0) | 252 | < 433 (887) | (E) | ← 355 (1629) | | 1 | ↑ 45(35)
↑ 0(3)
✔ 181(71) | | ↑ in (in)
↑ in (in)
↑ o(i) | 962 (540) | ↑000
1337 (259)
√111 (59) | P 0 (0) | \ \ 3 (123)
(17 (24)
√ 20 (185) | 74 (298) | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ¥ 0(0) | | | <u>Y</u> | Station Rd | | - A - | | | | | | 4 | | | 49 (46) 📣
341 (196)> | 25520 | 0 (O) 0
←— (O) 0 | 86 (222) ★
390 (616) ↓
0 (6) ↓
Samoros
Rd | 235 (129) | 212 | 113 (37) _A | S(80) S
17(80) ↓
17(80) ↓
17(80) ↓
18(80) ↓ | 284 (80) _A
1137 (582)> | | | 1 | 241 [190] | 22286 | 0 (0) -84 | 25 5 5 5 E | 6 (0)>
321 (44) -> | 2 8 5 8 g m | 983 (677) →>
53 (54) → | 20 (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | 1131 (005) | 2225 | | | 4 | E 漢 | 4 | | | 211 (80.6) →
211 (80.6) →
5.37 (13.5) √
Cameroe
Rd | -,-4 | 20 (80)
17 (39)
62 (427)
Marketplace | • • • | Corons Dr | | 1 | | " | | 5 | | 5 | | ₹ | | 9 | | | Los Carneros | Calle Koral | Los Carneros | | ILos Cameros | Hollister Ave | 1. Storke/Market | nisce Dr | | | | 16 | | | 17 Lus Carrieros | | 18 Cos Carrieros | | 19 Stortenmarke | | | | | | €_ | Calle Korai | _ | Castillen Dr | | Uniform Aven | | | | 1 | | 1 | .90 (74)
1222 (714)
345 (154) | A 178 (444) | 22 | ₹ 8(8) | ↑ 228 (140)
← 322 (576)
▼ 28 (84) | Hollister Ave | 8 6 6 | Marketplace
\$ (70) | | N. | | 1 | 8 2 8 | < 10 (42) | 8 8 2 | ← 0 (0) | 888 | ← 346 (593) | 882 | < 7 (43) | | ← | | | گ _ا بھ | ¥° 41 (15) | A 622 (76)
★ 63 (636)
★ 13 (6) | ¥ 8 (40) | 412 | ¥ 68 (12Z) | ↑ 228 (380)
↑ 658 (975)
↑ 19 (53) | ¥ 11 (75) | 4 1 's | 8 | | 1 | 74 (90) | × 1 2 | 53 (541) 🔥 | × 1 2 | 180 (330) 🙏 | < f > | 215 (222) | « † » | | 417 | | l | 42 (181 | 38938 | 6 (0) | 86858 | 305 (503) | 22222 | 200 | 金金安里 | A
 | 1.17 | | 1 | 50 (48) | 49 (1632) 1 19 (1632) 1 19 (1632) 1 19 (173) | 64 (131) | 114 (100) A
477 (937) —
38 (60) A
Los Cannaros
Rd | 342 (129) | 56 (376) →
362 (722) →
51 (99) →
Cemeros
Rd | 43 (84) | 40 (1881) A
500
(087) 4
1653) 4
Storks Rd | | 1 | | | | 8 G | 1 | - 4 8 | ' | 9 1 | 1 | - 15 B | ` | 1 | | L | | 3 | } | 3 | | ğ | | - | 1 | | | | | | | | | | | | | | | Key | | w | - | | | | | - | Fäe Info | nesilea | | 31 (| | | | | អ្ | | | | C | \$ | | 4 | = Movem | ent Volume | | | L. | | | | Excel File = 1 | volmaps.xls | | | | | | | w 💠 | E | | | Tums (AM) | = em.csv | | | | | | | V | | | | Toms (PIA) | ≈ pm.csv | | | | | | | 3 | | | | 1/5/2010 | | | | | | | | | | | | © Dowling & | Assoc, Inc. | | | | ···· | | | | | | | , | | | 6°5 ~ - | odina A- | annintan I | lna. | | | | 1 | | ~ 4 40 | | | | | ssociates, l | | | | | | tersection | | N | | ATI | E Model | ing Suppor | rt - Westar | Projects | | | 2030 C | umulative | Plus Proje | ect 🤻 | | | | | | - | | | | | | | * MORE ASSUMES 34 DU ON 7400 CATHEDRAL DAILS ROAD SITE # ASSOCIATED TRANSPORTATION ENGINEERS 100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 • (805) 687-4418 • FAX (805) 682-8509 Richard L. Pool, P.E. Scott A. Schell, AICP, PTP February 15, 2011 #### **MEMORANDUM** To: Steve Wagner, Jim Biega, Marti Schultz City of Goleta From: Matthew Farrington Associated Transportation Engineers Subject: 7400 Cathedral Oaks Road Project - Adjusted Cumulative Volumes The following memo reviews the methodologies that will be used to adjust the cumulative volumes for the traffic study being prepared for the 7400 Cathedral Oaks Road Project. The adjusted volumes reflect the changes in the project descriptions between the cumulative project list prepared in September 2010 and the current list developed in February 2011 for the Village at Los Carneros Project, the Goleta Marriott Inn Project, and the Camino Real Hotel Project. The change in trip generation and the distribution model for each project is outlined below. ## **Village at Los Carneros Project** The February 2011 cumulative list shows the project to include 465 total residential units, which is an increase of 37 units when compared to the list prepared in September 2010. Based on the current project description, provided by Alan Hanson at the City of Goleta, the change in units is based on an increase in the number of condominium units. Table 1 presents the change in trip generation for the Village at Los Carneros Project. Table 1 Trip Generation Comparison - Village at Los Carneros Project | _ | | A | .DT | A.M. Pe | ak Hour | P.M. Pe | ak Hour | |----------------|---------------|------|------------|---------|---------|---------|---------| | Scenario | Size | Rate | Trips | Rate | Trips | Rate | Trips | | September 2010 | 228 Units (a) | 5.81 | 1,325 | 0.44 | 100 | 0.52 | 119 | | February 2011 | 265 Units (a) | 5.81 | 1,540 | 0.44 | 117 | 0.52 | 138 | ⁽a) Unit change in Condominium/Town home component of Project. The data presented in Table 1 indicate that the project is forecast to generate a net increase in 215 average daily trips, 17 A.M. peak hour trips, and 19 P.M. peak hour trips. The net trips will be assigned to the study street network based on the distribution pattern previously developed for the project EIR¹, which is shown on Figure 1 (attached). #### **Goleta Marriott Project** The February 2011 cumulative list shows the project to include 118 hotel rooms, which is a decrease of 15 rooms when compared to the list prepared in September 2010. Table 2 presents the change in trip generation for the Goleta Marriott Project. Table 2 Trip Generation Comparison - Goleta Marriott Project | | | ADT | | A.M. Peak Hour | | P.M. Peak Hour | | |----------------|-----------|------|---------------|----------------|-------|----------------|------------| | Scenario | Size | Rate | Trips | Rate | Trips | Rate | Trips | | September 2010 | 133 Rooms | 8.17 | 1,08 <i>7</i> | 0.56 | 74 | 0.59 | <i>7</i> 8 | | February 2011 | 118 Rooms | 8.17 | 964 | 0.56 | 66 | 0.59 | 70 | | Net Change | -15 Rooms | | -123 | | -8 | | -8 | The data presented in Table 2 indicate that the project is forecast to generate a net decrease of 123 average daily trips, 8 A.M. peak hour trips, and 8 P.M. peak hour trips. The net decrease in trips will be assigned to the study street network based on the distribution pattern developed for the project MND ², which is shown on Figure 2 (attached). ¹ The Village at Los Carneros - Proposed Final EIR, Envicom Corporation, November 2007. ² Marriott Residence Inn and Hollister Business Center - Final MND, City of Goleta, 2008. ## **Camino Real Hotel Project** The February 2011 cumulative list shows the project to include 106 hotel rooms, which is an increase of 7 rooms when compared to the list prepared in September 2010. Table 3 presents the change in trip generation for the Goleta Marriott Project. Table 3 Trip Generation Comparison - Camino Real Hotel Project | Scenario | Size | A | DΤ | A.M. Pe | ak Hour | P.M. P | eak Hour | |----------------|-----------|----------------------|-------|---|---------|--------|----------| | Scenario | SIZE | Rate | Trips | Rate | Trips | Rate | Trips | | September 2010 | 99 Rooms | 8.17 | 809 | 0.56 | 55 | 0.59 | 58 | | February 2011 | 106 Rooms | 8. 1 <i>7</i> | 866 | 0.56 | 59 | 0.59 | 63 | | Net Change | +7 Rooms | | +57 | and a section of the | +4 | | +5 | The data presented in Table 3 indicate that the project is forecast to generate a net increase of 57 average daily trips, 4 A.M. peak hour trips, and 5 P.M. peak hour trips. The net new trips will be assigned to the study street network based on the distribution pattern contained in the traffic study prepared for the project³, as shown on Figure 3 (attached). ³ Camino Real Hotel Project - Revised Traffic, Circulation, and Parking Study, ATE, January 31, 2008. 님 Associated Transportation Engineers EXISTING STREET NETWORK AND PROJECT LOCATION FIGURE (MMF - #10086 ජ CITY OF GOLETA CUMULATIVE PROJECT LIST # CITY OF GOLETA PLANNING AND ENVIRONMENTAL SERVICES CUMULATIVE DEVELOPMENT PROJECTS LIST (MAJOR PROJECTS) FEBRUARY 2011 | PLANNER | PROJECT | LOCATION | APN | DESCRIPTION | STATUS | |----------------|--|---------------------------------|-------------|---|---| | | | ; Pi | | OJECTS | | | Hanson
(OT) | Fairview Commercial Center; 01-SB-DP; CUP | 151 S. Fairview
Avenue | 073-080-019 | 16,885 SF mixed use building
(9,250 SF retail space, 6,110 SF office space)
2 units | Pending | | Kolwitz | Islamic Society of
Santa Barbara
03-051-DP; CUP | NEC Los Carneros and Calle Real | 077-160-035 | 6,183 SF building for Islamic Center 1 caretaker unit | Pending | | Hanson
(OT) | Meyer-Thrifty
64-SB-DP | 5971 Placencia
Street | 071-182-007 | 1,682 SF car rental agency office | Pending | | Kolwitz | Taylor Parcel Map
03-053-PM | 590 N. Kellogg
Avenue | 069-100-003 | 3 new parcels | Pending | | Dudek | Bacara Completion
Phase
05-034-GP, -DP, -
TM | 8301 Hollister
Avenue | 079-200-013 | 189,217 SF (55 suites) | Pending | | Hanson | Rancho Mobile
Home Park
Subdivision
(Guggenheim)
05-140-TM | 7465 Hollister
Avenue | 079-210-058 | Subdivision of a 17.84 acre rental mobile home park property (150 existing mobile homes). | Pending -
California Coastal
Commission | | PLANNER | PROJECT | LOCATION | APN | DESCRIPTION | STATUS | |-------------------------------|---|---|---|--|---------| | Kolwitz | Sturgeon Building
06-180-DP | SEC Los Carneros
and Calle Real | 077-160-040 | 6,046 SF retail/medical office | Pending | | Hanson |
Mariposa at
Ellwood Shores
07-217-DP et al | 7760 Hollister
Avenue | 079-210-057 | 70,510 SF assisted living facility (99 residents) | Pending | | Vik
(OT) | Schwan Self
Storage
07-229-DP | 10 S. Kellogg
Avenue | 071-090-082 | 111,730 SF self-storage facility | Pending | | Hanson | Shelby Trust
05-154-GP, -RZ et
al | 7400 Cathedral
Oaks Road | 077-530-019 | 60 residential units | Pending | | Hanson
(OT – East
Wing) | Jordano's Master
Plan
08-109-GPA, RZN,
OA, LLA, FDP | 5305 and 5324
Ekwill/550 S
Patterson | 065-090-029,
-034, -036 | Existing Jordano's facility, plus: 52,080 SF warehouse net new 4,640 SF office net new 1,600 SF new truck wash area | Pending | | Campbell | Willow Springs II
08-128-GPA, -SPA,
-VTM, -DP, -CUP,
-Lot Merger, -DRB | Camino Vista e/o
Los Carneros Road | 073-060-044,
-045, -046,
-047, -048 | 100 residential units | Pending | | Hanson | Village at Los
Carneros I and II
10-044-GPA,-VTM,
-DP, -DRB; 10-043 | Adj. to 71 South
Los Carneros Road | 073-330-024,
-026, -027,
-028, -029 | 465 residential units | Pending | | Kolwitz
Ling | Westar
08-143-GPA et al | Hollister Avenue
n/w of Glen Annie
Road | 073-030-020
073-030-021 | 279 residential units
90,054 SF retail | Pending | | Ling
Saley | Montecito Bank
and Trust
08-196-GPA, -RZ, -
LLA, -DP | 6900 Hollister
Avenue | 073-140-006 | 3,713 SF bank w/drive-up window
2,176 SF office | Pending | | PLANNER | PROJECT | LOCATION | APN | DESCRIPTION | STATUS | |---------------------------------|---|-------------------------------------|---|--|----------| | Campbell
(OT – West
Wing) | Marriott Residence
Inn
09-075-TPM, -DP;
09-079-DP AM | 6300 Hollister
Avenue | 073-050-020 | 80,989 SF hotel (118 rooms) | Pending | | Ling | Rincon Palms Hotel
and Restaurant
09-106-DP RV | 6868/6878 Hollister
Avenue | 073-140-004 | 75,580 SF hotel (102 rooms)
6,000 SF restaurant | Pending | | Hanson | Cortona Apts
09-140-DP | 6830 Cortona Drive | 073-140-016 | 171 residential units | Pending | | VIk | Kenwood Village
08-205-GPA | Calle Real w/o
Calaveras Avenue | 077-130-006,
077-130-019,
077-141-049 | 60 residential units | Pending | | Hanson
(OT) | Concrete Recycling
Facility
09-133-DP | 903 South Kellogg
Avenue | 071-190-034 | 18,400 SF operations
30,500 SF storage | Pending | | Hanson | McDonalds, USA
10-085-CUP,
DPAM | 6900 Marketplace
Drive | 073-440-024 | add drive-thru window | Pending | | Kolwitz | Camino Real Hotel
11-005-SPA, -DP
RV | 401 Storke Road | 073-440-019 | 73,828 SF hotel (106 rooms) | Pending | | | | AP | RIKOVED ISI | (૦)માં વધાઉ | | | Kolwitz | Camino Real
Marketplace –
Skating Facilities
95-DP-026 | Santa Felicia Drive | 073-440-022 | 46,000 SF ice rink
17,000 SF roller rink | Approved | | Kolwitz | Robinson LLA-
related lots | Baker, Violet and
Daffodil Lanes | 077-141-053,
077-141-070
et al | 13 residential units (4 approved and 9 under construction) | Approved | | PLANNER | PROJECT | LOCATION | APN | DESCRIPTION | STATUS | |------------------------------|--|--|-----------------------------|--|---| | Moore | Cabrillo Business
Park
37-SB-DP et al | 6767 Hollister
Avenue | 073-450-005 | Business Park with new structures totaling 707,100 SF (R&D, self storage, onsite service related uses) | Approved | | Hanson | Village at Los
Carneros
03-050-TM, -DP, et
al | S. Los Carneros
Road
Cortona/Castilian
Drives | 073-330-024,
073-330-027 | 275 residential units | Approved (on hold;
substitute
application; see 10-
044-DP) | | Miller | Rincon Palms Hotel
and Restaurant
07-020-RZ, -DP | 6868/6878 Hollister
Avenue | 073-140-004 | 59,600 SF hotel (112 rooms)
6,000 SF restaurant | Approved
(on hold; revised
application
pending) | | Kolwitz | Camino Real Hotel
07-208-DP et al | 401 Storke Road | 073-440-019 | 73,828 SF hotel (99 rooms) | Approved
(on hold; revised
application
pending) | | VIk | Renco Encoders
07-103-DP | 26 Coromar Drive | 073-150-013 | Existing M-RP Bldg (33,600 SF)
add 8800 SF manu.space
add 10,400 SF office | Approved | | Moore | Citrus Village
04-226-DP; TM | 7388 Calle Real | 077-490-043 | 10 residential units | Approved | | Moore | Haskell's Landing
07-102-GP, -TM,
-DP | Hollister Avenue
w/o Las Armas
Road | 079-210-049 | 101 residential units | Approved | | Hanson | AMR Deployment
Center
10-106-CUP | 7200 Hollister
Avenue | 073-020-018 | occupy 8300 SF in an existing M-RP building; no new square footage | Approved | | Ling
(OT) | Dawson Contractor
Storage
09-171-LUP | 5750 Dawson
Avenue | 071-121-006 | 1440 SF office; contractor storage | Approved | | Moore
(OT – East
Wing) | GVCH Medical
Office Building
Reconstruction
08-185-DP | 5333 Hollister Ave | 065-090-023 | Medical Office Building
41,224 SF existing (demo)
52,000 SF proposed | Approved | | | | | | 10,776 SF net new | | | PLANNER | PROJECT | LOCATION | APN | DESCRIPTION | STATUS | |------------------------------|---|---|---|--|------------------------------------| | VIk | Winchester
Commons HOA
08-029-TPM, -DP
RV | 7960 Winchester
Circle | 079-730-039 | 1 SFD (conversion of day care center) | Approved | | | | PROJECTS/UN |
 D = 7 (0/0)7 = 1 | RUCTION(GOCULIED | | | Hanson | Quixote Fund
00-DP-030 | 275 Mathilda Drive | 079-554-009 | 2 residential units | Under
Construction | | Kolwitz | Robinson LLA-
related lots | Baker, Violet and
Daffodil Lanes | 077-141-053,
077-141-070
and others | 13 residential units (SFDs; 4 approved and 9 under construction) | Occupied | | Hanson | Comstock Homes
67-SB-TM | 7800 block of
Hollister Avenue | 079-210-067 | 62 residential units (SFDs) | Under
Construction/Occ
upied | | Kolwitz
(OT) | Fairview Corporate Center 74-SB-DP | 420 S. Fairview
Avenue | 071-130-057,
-061, -062 | 73,203 SF M-RP building | Occupied | | Moore
(OT) | Sumida Gardens
07-052-DP et al
08-065-LUP | 5501 Overpass
Road | 071-330-012 | 200 residential units | Occupied | | Moore
(OT) | Stokes Industrial
Building
02-084-DP | East side of
Technology Drive | 071-170-085 | 5,000 SF industrial building | Occupied | | Moore
(OT – East
Wing) | Goleta Valley
Cottage Hospital
07-171-OA, -DP, -
DRB | 351 S. Patterson
SE Corner of
Patterson/Hollister | 065-090-022
065-090-028 | Hospital: 93,090 SF existing
152,658 SF proposed
59,568 SF net new | Under
Construction | | Kolwitz | Camino Real
Marketplace
Best Buy
Expansion
08-075-DP AM | 7090 Marketplace
Drive | 073-440-013 | 7,770 SF retail expansion | Occupied | | PLANNER | PROJECT | LOCATION | APN | DESCRIPTION | STATUS | |-----------------|--|---------------------------|-------------|---|-----------------------| | Kolwitz | Fairview Gardens
08-111-CUP | 598 N. Fairview
Avenue | 069-090-052 | 5 units for farm-worker housing; 2 accessory yurts | Occupied | | Kolwitz
(OT) | Towbes/ATK
08-157-OA, -DP
RV | 600 Pine Avenue | 071-130-040 | 23,276 SF addition to an existing research park building | Occupied | | Moore
(OT) | Housing Authority
Braddock House
05-059-PM; DP
AM02 | 5575 Armitos
Avenue | 071-090-084 | Division of 2.43 acres into two parcels of 2.19 and 0.24 acres; addition of 1 new assisted living unit (4 rooms; Braddock House 2,755 SF); Miller Community Center 1,536 SF | Under
Construction | | | Residential Units | Commercial/Industrial SF | |-----------------------------|-------------------|--------------------------| | Pending | 1,041 | 840,213 | | Approved | 391 | 940,944 | | Under Construction/Occupied | 279 | 170,353 | | | | | | TOTAL | 1,711 | 1,951,510 | ### NOTE: - 1. - OT = Old Town Wireless and Energy projects are not included in this table. 2. # **ASSOCIATED TRANSPORTATION ENGINEERS** 100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 • (805) 687-4418 • FAX (805) 682-8509 Richard L. Pool, P.E. Scott A. Schell, AICP, PTP #### **MEMORANDUM** August 13, 2013 10086M02.WP To: Mark Lloyd, Land Consultants From: Scott A. Schell, AICP, PTP Associated Transportation Engineers Subject: 7400 Cathedral Oaks Road Project - Construction Impacts Pursuant to your request, ATE is providing the following information related to potential construction impacts that would be generated by the 7400 Cathedral Oaks Road Project. The project is proposing to develop a vacant site, located at 7400 Cathedral Oaks Road, with 60 single family dwelling units. Access to the project site would be provided via two new roadway connections to Cathedral Oaks Road. A new loop road would be constructed to provide internal circulation throughout the site. The construction period is estimated at 12-14 months. The site would be cleared in the first phase (demolition, excavation and grading) and then building construction would commence. During the peak period
of construction activities, a workforce of 55 workers would be required. It is assumed that workers would begin at 7 A.M. and end by 4:00 P.M. Construction workers are anticipated to work in 1 overall shift. The number of construction worker vehicles was estimated based on an occupancy of 1.25 persons per vehicle. Thus, it is estimated that up to 44 inbound trips would occur during the A.M. peak period and 44 outbound trips would occur during the P.M. peak hour on a daily basis during the peak construction period. The traffic study prepared for the project estimated that the proposed project would generate 45 A.M. peak hour trips and 61 P.M. peak hour trips, which is slightly more peak hour trips than the construction phase. The traffic study prepared for the project found that all of the study-area roadways and intersections would operate at LOS C or better during the A.M. and P.M. peak hours with existing + project traffic, which meet the City's LOS C operating standard. It can therefore be concluded that the additional traffic generated by construction traffic would not significantly impact the area roadways and intersections. Truck trips would be required for the first phase (demolition, excavation and grading) as well as for delivery of construction equipment and material during the course of the construction phase. The site access and circulation system has been designed to accommodate truck traffic. Equipment staging and storage would occur on the site. Also, construction worker parking would be accommodated on the site. Therefore, construction related vehicles would not affect parking and traffic operations on the streets in the immediate vicinity of the site. While the construction phase of the project would not generate significant impacts, the following measures are recommended to minimize traffic and parking impacts during the construction phase. - ▶ Work with City of Goleta to develop a truck routing plan. - Schedule truck trips during non-peak travel periods to the extent possible. - ▶ Designate on-site areas for storage of construction equipment and materials. - Designate on-site parking areas for construction worker vehicles. - Develop traffic control plans for work that disrupts traffic on Cathedral Oaks Road. - Designate an on-site construction manager and post information (telephone number, email, web site, etc.) for the public to contact the construction manager to address any construction issues.